TY - JOUR
T1 - Zircon O- and Hf-isotope constraints on the genesis and tectonic significance of Permian magmatism in Patagonia
AU - Castillo, Paula
AU - Mark Fanning, C.
AU - Pankhurst, Robert J.
AU - Hervé, Francisco
AU - Rapela, Carlos W.
PY - 2017/9/1
Y1 - 2017/9/1
N2 - The genesis of Permian magmatism in southern South America is actively debated, particularly in relation to the origin of Patagonia. U-Pb zircon ages of c. 255 Ma for igneous rocks from the basement of Tierra del Fuego are the first evidence for southerly prolongation of this magmatism. Zircon in these rocks has εHft values <-1 and δ18O > 7.4‰, indicating recycling of Cambrian rocks. Permian granites in the north of the North Patagonian Massif record mantle-like δ18O magmatic input at c. 280 and 255 Ma, but reworking of upper crust between these two events, paralleling the recognized deformational history. In northwestern Patagonia, Early Permian granitic rocks have zircon with eHft values ranging from +0.1 to -7.2, and δ18O > 6.2‰, suggesting continuity of the Permian magmatic belt along the western margin of South America farther north. Comparison with a sample from the Sierra de la Ventana suggests melting of similar crust on both sides of the Patagonia-South American hypothetical suture. These features, together with other geological considerations, are consistent with an autochthonous or parautochthonous origin of northern Patagonia and connection between southern Patagonia and the Antarctic Peninsula in late Palaeozoic time.
AB - The genesis of Permian magmatism in southern South America is actively debated, particularly in relation to the origin of Patagonia. U-Pb zircon ages of c. 255 Ma for igneous rocks from the basement of Tierra del Fuego are the first evidence for southerly prolongation of this magmatism. Zircon in these rocks has εHft values <-1 and δ18O > 7.4‰, indicating recycling of Cambrian rocks. Permian granites in the north of the North Patagonian Massif record mantle-like δ18O magmatic input at c. 280 and 255 Ma, but reworking of upper crust between these two events, paralleling the recognized deformational history. In northwestern Patagonia, Early Permian granitic rocks have zircon with eHft values ranging from +0.1 to -7.2, and δ18O > 6.2‰, suggesting continuity of the Permian magmatic belt along the western margin of South America farther north. Comparison with a sample from the Sierra de la Ventana suggests melting of similar crust on both sides of the Patagonia-South American hypothetical suture. These features, together with other geological considerations, are consistent with an autochthonous or parautochthonous origin of northern Patagonia and connection between southern Patagonia and the Antarctic Peninsula in late Palaeozoic time.
UR - http://www.scopus.com/inward/record.url?scp=85029358129&partnerID=8YFLogxK
U2 - 10.1144/jgs2016-152
DO - 10.1144/jgs2016-152
M3 - Article
AN - SCOPUS:85029358129
SN - 0016-7649
VL - 174
SP - 803
EP - 816
JO - Journal of the Geological Society
JF - Journal of the Geological Society
IS - 5
ER -