WS-YOLO: An Agronomical and Computer Vision-Based Framework to Detect Drought Stress in Lettuce Seedlings Using IR Imaging and YOLOv8

Sebastian Wolter-Salas, Paulo Canessa, Reinaldo Campos-Vargas, Maria Cecilia Opazo, Romina V. Sepulveda, Daniel Aguayo

Producción científica: Contribución a los tipos de informe/libroContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Lettuce (Lactuca sativa L.) is highly susceptible to drought and water deficits, resulting in lower crop yields, unharvested areas, reduced crop health and quality. To address this, we developed a High-Throughput Phenotyping platform using Deep Learning and infrared images to detect stress stages in lettuce seedlings, which could help to apply real-time agronomical decisions from data using variable rate irrigation systems. Accordingly, a comprehensive database comprising infrared images of lettuce grown under drought-induced stress conditions was built. In order to capture the required data, we deployed a Raspberry Pi robot to autonomously collect infrared images of lettuce seedlings during an 8-day drought stress experiment. This resulted in the generation of a database containing 2119 images through augmentation. Leveraging this data, a YOLOv8 model was trained (WS-YOLO), employing instance segmentation for accurate stress level detection. The results demonstrated the efficacy of our approach, with WS-YOLO achieving a mean Average Precision (mAP) of 93.62% and an F1 score of 89.31%. Particularly, high efficiency in early stress detection was achieved, being a critical factor for improving food security through timely interventions. Therefore, our proposed High-Throughput Phenotyping platform holds the potential for high-yield lettuce breeding, enabling early stress detection and supporting informed decision-making to mitigate losses. This interdisciplinary approach highlights the potential of AI-driven solutions in addressing pressing challenges in food production and sustainability. This work contributes to the field of precision agricultural technology, providing opportunities for further research and implementation of cutting-edge Deep Learning techniques for stress detection in crops.

Idioma originalInglés
Título de la publicación alojadaAdvanced Research in Technologies, Information, Innovation and Sustainability - 3rd International Conference, ARTIIS 2023, Proceedings
EditoresTeresa Guarda, Filipe Portela, Jose Maria Diaz-Nafria
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas339-351
Número de páginas13
ISBN (versión impresa)9783031488573
DOI
EstadoPublicada - 2024
Evento3rd International Conference on Advanced Research in Technologies, Information, Innovation and Sustainability, ARTIIS 2023 - Madrid, Espana
Duración: 18 oct. 202320 oct. 2023

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1935 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia3rd International Conference on Advanced Research in Technologies, Information, Innovation and Sustainability, ARTIIS 2023
País/TerritorioEspana
CiudadMadrid
Período18/10/2320/10/23

Áreas temáticas de ASJC Scopus

  • Ciencia de la Computación General
  • Matemáticas General

Huella

Profundice en los temas de investigación de 'WS-YOLO: An Agronomical and Computer Vision-Based Framework to Detect Drought Stress in Lettuce Seedlings Using IR Imaging and YOLOv8'. En conjunto forman una huella única.

Citar esto