Weighted antimagic labeling

Martín Matamala, José Zamora

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

8 Citas (Scopus)

Resumen

A graph G=(V,E) is weighted- k-antimagic if for each w:V→R, there is an injective function f:E→{1,…,|E|+k} such that the following sums are all distinct: for each vertex u, ∑v:uv∈Ef(uv)+w(u). When such a function f exists, it is called a (w,k)-antimagic labeling of G. A connected graph G is antimagic if it has a (w0,0)-antimagic labeling, for w0(u)=0, for each u∈V. In this work, we prove that all the complete bipartite graphs Kp,q, are weighted-0-antimagic when 2≤p≤q and q≥3. Moreover, an algorithm is proposed that computes in polynomial time a (w,0)-antimagic labeling of the graph. Our result implies that if H is a complete partite graph, with H≠K1,q, K2,2, then any connected graph G containing H as a spanning subgraph is antimagic.

Idioma originalInglés
Páginas (desde-hasta)194-201
Número de páginas8
PublicaciónDiscrete Applied Mathematics
Volumen245
DOI
EstadoPublicada - 20 ago. 2018

Áreas temáticas de ASJC Scopus

  • Matemáticas discretas y combinatorias
  • Matemáticas aplicadas

Huella

Profundice en los temas de investigación de 'Weighted antimagic labeling'. En conjunto forman una huella única.

Citar esto