Washington photometry of open cluster giants: Nine old disk clusters in the third galactic quadrant

Doug Geisler, Juan J. Claria, Dante Minniti

Resultado de la investigación: Article

35 Citas (Scopus)

Resumen

One hundred and thirty six stars associated with nine old open clusters with Galactic longitudes between 215° and 295° have been investigated with the Washington photometric system. The data yield a luminosity class, temperature, and metal abundance for each star. The luminosity classification, supplemented with additional membership criteria, is used to separate field stars from cluster giants; definitive membership status is available for virtually the entire sample. Mean metal abundances for an average of twelve member giants per cluster are determined to an accuracy of ∼0.2 dex (standard deviation), including observational and reddening errors. For the five clusters in common with the recent spectroscopic study by Friel & Janes [A&A, 1992 (in press)], agreement is generally good, although our metallicities are ∼0.1 dex lower, on average. Two of the other four clusters, NGC 2324 and NGC 2660, are found to be surprisingly metal-poor, with [Fe/H]∼-1. The existence of such metal-poor clusters, without other exceptional properties (Galactocentric distance, distance from the plane, or age), is anomalous. A third cluster, NGC 3960, has a Galactocentric distance of only 8 kpc but a metallicity of ∼-0.7. Such clusters indicate substantial scatter actually exists in the tight relation found by Friel and Janes between the metallicity of an open cluster and its current Galactocentric distance. We concur with their findings that Galactocentric distance is the major factor in determining open cluster metallicities and that age and metallicity are not correlated for open clusters, unlike the case for Large Magellanic Cloud clusters. We emphasize, however, that outer disk clusters have a metallicity at a given age that is much more like that of their LMC counterparts than that of solar neighborhood disk field stars or clusters. Indeed, these latter two populations appear to have distinct age-metallicity distributions as well, with the solar neighborhood open clusters more metal-poor by ∼0.15 dex than local disk field stars of the same age, except for the oldest clusters. An offset in metallicity scales is the most likely explanation for this effect.

Idioma originalEnglish
Páginas (desde-hasta)1892-1905
Número de páginas14
PublicaciónAstronomical Journal
Volumen104
N.º5
EstadoPublished - nov 1992

Huella dactilar

quadrants
open clusters
photometry
metallicity
metal
star distribution
solar neighborhood
age structure
metals
luminosity
stars
Magellanic clouds
metal clusters
standard deviation
temperature

ASJC Scopus subject areas

  • Space and Planetary Science
  • Astronomy and Astrophysics

Citar esto

@article{02b7d015287145d8a31d137608e27d93,
title = "Washington photometry of open cluster giants: Nine old disk clusters in the third galactic quadrant",
abstract = "One hundred and thirty six stars associated with nine old open clusters with Galactic longitudes between 215° and 295° have been investigated with the Washington photometric system. The data yield a luminosity class, temperature, and metal abundance for each star. The luminosity classification, supplemented with additional membership criteria, is used to separate field stars from cluster giants; definitive membership status is available for virtually the entire sample. Mean metal abundances for an average of twelve member giants per cluster are determined to an accuracy of ∼0.2 dex (standard deviation), including observational and reddening errors. For the five clusters in common with the recent spectroscopic study by Friel & Janes [A&A, 1992 (in press)], agreement is generally good, although our metallicities are ∼0.1 dex lower, on average. Two of the other four clusters, NGC 2324 and NGC 2660, are found to be surprisingly metal-poor, with [Fe/H]∼-1. The existence of such metal-poor clusters, without other exceptional properties (Galactocentric distance, distance from the plane, or age), is anomalous. A third cluster, NGC 3960, has a Galactocentric distance of only 8 kpc but a metallicity of ∼-0.7. Such clusters indicate substantial scatter actually exists in the tight relation found by Friel and Janes between the metallicity of an open cluster and its current Galactocentric distance. We concur with their findings that Galactocentric distance is the major factor in determining open cluster metallicities and that age and metallicity are not correlated for open clusters, unlike the case for Large Magellanic Cloud clusters. We emphasize, however, that outer disk clusters have a metallicity at a given age that is much more like that of their LMC counterparts than that of solar neighborhood disk field stars or clusters. Indeed, these latter two populations appear to have distinct age-metallicity distributions as well, with the solar neighborhood open clusters more metal-poor by ∼0.15 dex than local disk field stars of the same age, except for the oldest clusters. An offset in metallicity scales is the most likely explanation for this effect.",
author = "Doug Geisler and Claria, {Juan J.} and Dante Minniti",
year = "1992",
month = "11",
language = "English",
volume = "104",
pages = "1892--1905",
journal = "Astronomical Journal",
issn = "0004-6256",
publisher = "IOP Publishing Ltd.",
number = "5",

}

Washington photometry of open cluster giants : Nine old disk clusters in the third galactic quadrant. / Geisler, Doug; Claria, Juan J.; Minniti, Dante.

En: Astronomical Journal, Vol. 104, N.º 5, 11.1992, p. 1892-1905.

Resultado de la investigación: Article

TY - JOUR

T1 - Washington photometry of open cluster giants

T2 - Nine old disk clusters in the third galactic quadrant

AU - Geisler, Doug

AU - Claria, Juan J.

AU - Minniti, Dante

PY - 1992/11

Y1 - 1992/11

N2 - One hundred and thirty six stars associated with nine old open clusters with Galactic longitudes between 215° and 295° have been investigated with the Washington photometric system. The data yield a luminosity class, temperature, and metal abundance for each star. The luminosity classification, supplemented with additional membership criteria, is used to separate field stars from cluster giants; definitive membership status is available for virtually the entire sample. Mean metal abundances for an average of twelve member giants per cluster are determined to an accuracy of ∼0.2 dex (standard deviation), including observational and reddening errors. For the five clusters in common with the recent spectroscopic study by Friel & Janes [A&A, 1992 (in press)], agreement is generally good, although our metallicities are ∼0.1 dex lower, on average. Two of the other four clusters, NGC 2324 and NGC 2660, are found to be surprisingly metal-poor, with [Fe/H]∼-1. The existence of such metal-poor clusters, without other exceptional properties (Galactocentric distance, distance from the plane, or age), is anomalous. A third cluster, NGC 3960, has a Galactocentric distance of only 8 kpc but a metallicity of ∼-0.7. Such clusters indicate substantial scatter actually exists in the tight relation found by Friel and Janes between the metallicity of an open cluster and its current Galactocentric distance. We concur with their findings that Galactocentric distance is the major factor in determining open cluster metallicities and that age and metallicity are not correlated for open clusters, unlike the case for Large Magellanic Cloud clusters. We emphasize, however, that outer disk clusters have a metallicity at a given age that is much more like that of their LMC counterparts than that of solar neighborhood disk field stars or clusters. Indeed, these latter two populations appear to have distinct age-metallicity distributions as well, with the solar neighborhood open clusters more metal-poor by ∼0.15 dex than local disk field stars of the same age, except for the oldest clusters. An offset in metallicity scales is the most likely explanation for this effect.

AB - One hundred and thirty six stars associated with nine old open clusters with Galactic longitudes between 215° and 295° have been investigated with the Washington photometric system. The data yield a luminosity class, temperature, and metal abundance for each star. The luminosity classification, supplemented with additional membership criteria, is used to separate field stars from cluster giants; definitive membership status is available for virtually the entire sample. Mean metal abundances for an average of twelve member giants per cluster are determined to an accuracy of ∼0.2 dex (standard deviation), including observational and reddening errors. For the five clusters in common with the recent spectroscopic study by Friel & Janes [A&A, 1992 (in press)], agreement is generally good, although our metallicities are ∼0.1 dex lower, on average. Two of the other four clusters, NGC 2324 and NGC 2660, are found to be surprisingly metal-poor, with [Fe/H]∼-1. The existence of such metal-poor clusters, without other exceptional properties (Galactocentric distance, distance from the plane, or age), is anomalous. A third cluster, NGC 3960, has a Galactocentric distance of only 8 kpc but a metallicity of ∼-0.7. Such clusters indicate substantial scatter actually exists in the tight relation found by Friel and Janes between the metallicity of an open cluster and its current Galactocentric distance. We concur with their findings that Galactocentric distance is the major factor in determining open cluster metallicities and that age and metallicity are not correlated for open clusters, unlike the case for Large Magellanic Cloud clusters. We emphasize, however, that outer disk clusters have a metallicity at a given age that is much more like that of their LMC counterparts than that of solar neighborhood disk field stars or clusters. Indeed, these latter two populations appear to have distinct age-metallicity distributions as well, with the solar neighborhood open clusters more metal-poor by ∼0.15 dex than local disk field stars of the same age, except for the oldest clusters. An offset in metallicity scales is the most likely explanation for this effect.

UR - http://www.scopus.com/inward/record.url?scp=0000864138&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0000864138

VL - 104

SP - 1892

EP - 1905

JO - Astronomical Journal

JF - Astronomical Journal

SN - 0004-6256

IS - 5

ER -