Vacuum energy in Einstein-Gauss-Bonnet anti-de Sitter gravity

Georgios Kofinas, Rodrigo Olea

Resultado de la investigación: Contribución a una revistaArtículo

61 Citas (Scopus)

Resumen

A finite action principle for Einstein-Gauss-Bonnet anti-de Sitter gravity is achieved by supplementing the bulk Lagrangian by a suitable boundary term, whose form substantially differs in odd and even dimensions. For even dimensions, this term is given by the boundary contribution in the Euler theorem with a coupling constant fixed, demanding the spacetime to have constant (negative) curvature in the asymptotic region. For odd dimensions, the action is stationary under a boundary condition on the variation of the extrinsic curvature. A well-posed variational principle leads to an appropriate definition of energy and other conserved quantities using the Noether theorem, and to a correct description of black hole thermodynamics. In particular, this procedure assigns a nonzero energy to anti-de Sitter spacetime in all odd dimensions.

Idioma originalInglés
Número de artículo084035
PublicaciónPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volumen74
N.º8
DOI
EstadoPublicada - 7 nov 2006

Áreas temáticas de ASJC Scopus

  • Física nuclear y de alta energía
  • Física y astronomía (miscelánea)

Huella Profundice en los temas de investigación de 'Vacuum energy in Einstein-Gauss-Bonnet anti-de Sitter gravity'. En conjunto forman una huella única.

  • Citar esto