Using Low-Resolution Non-Invasive Infrared Sensors to Classify Activities and Falls in Older Adults

Gastón Márquez, Alejandro Veloz, Jean Gabriel Minonzio, Claudio Reyes, Esteban Calvo, Carla Taramasco

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

Resumen

The population is aging worldwide, creating new challenges to the quality of life of older adults and their families. Falls are an increasing, but not inevitable, threat to older adults. Information technologies provide several solutions to address falls, but smart homes and the most available solutions require expensive and invasive infrastructures. In this study, we propose a novel approach to classify and detect falls of older adults in their homes through low-resolution infrared sensors that are affordable, non-intrusive, do not disturb privacy, and are more acceptable to older adults. Using data collected between 2019 and 2020 with the eHomeseniors platform, we determine activity scores of older adults moving across two rooms in a house and represent an older adult fall through skeletonization. We find that our twofold approach effectively detects activity patterns and precisely identifies falls. Our study provides insights to physicians about the daily activities of their older adults and could potentially help them make decisions in case of abnormal behavior.

Idioma originalInglés
Número de artículo2321
PublicaciónSensors
Volumen22
N.º6
DOI
EstadoPublicada - 1 mar. 2022

Áreas temáticas de ASJC Scopus

  • Química analítica
  • Sistemas de información
  • Óptica y física atómica y molecular
  • Bioquímica
  • Instrumental
  • Ingeniería eléctrica y electrónica

Huella

Profundice en los temas de investigación de 'Using Low-Resolution Non-Invasive Infrared Sensors to Classify Activities and Falls in Older Adults'. En conjunto forman una huella única.

Citar esto