Uniform Propagation of Chaos for Kac’s 1D Particle System

Resultado de la investigación: Contribución a una revistaArtículo

Resumen

In this paper we study Kac’s 1D particle system, consisting of the velocities of N particles colliding at constant rate and randomly exchanging energies. We prove uniform (in time) propagation of chaos in Wasserstein distance with explicit polynomial rates in N, for both the squared (i.e., the energy) and non-squared particle system. These rates are of order N- 1 / 3 (almost, in the non-squared case), assuming that the initial distribution of the limit nonlinear equation has finite moments of sufficiently high order (4 + ϵ is enough when using the 2-Wasserstein distance). The proof relies on a convenient parametrization of the collision recently introduced by Hauray, as well as on a coupling technique developed by Cortez and Fontbona.

Idioma originalInglés
Páginas (desde-hasta)1102-1113
Número de páginas12
PublicaciónJournal of Statistical Physics
Volumen165
N.º6
DOI
EstadoPublicada - 1 dic 2016

Áreas temáticas de ASJC Scopus

  • Física estadística y no lineal
  • Física matemática

Huella Profundice en los temas de investigación de 'Uniform Propagation of Chaos for Kac’s 1D Particle System'. En conjunto forman una huella única.

  • Citar esto