Uniform propagation of chaos for a dollar exchange econophysics model

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

We study the poor-biased model for money exchange introduced in Cao & Motsch ((2023) Kinet. Relat. Models 16(5), 764–794.): agents are being randomly picked at a rate proportional to their current wealth, and then the selected agent gives a dollar to another agent picked uniformly at random. Simulations of a stochastic system of finitely many agents as well as a rigorous analysis carried out in Cao & Motsch ((2023) Kinet. Relat. Models 16(5), 764–794.), Lanchier ((2017) J. Stat. Phys. 167(1), 160–172.) suggest that, when both the number of agents and time become large enough, the distribution of money among the agents converges to a Poisson distribution. In this manuscript, we establish a uniform-in-time propagation of chaos result as the number of agents goes to infinity, which justifies the validity of the mean-field deterministic infinite system of ordinary differential equations as an approximation of the underlying stochastic agent-based dynamics.

Idioma originalInglés
PublicaciónEuropean Journal of Applied Mathematics
DOI
EstadoEn prensa - 2024

Áreas temáticas de ASJC Scopus

  • Matemáticas aplicadas

Huella

Profundice en los temas de investigación de 'Uniform propagation of chaos for a dollar exchange econophysics model'. En conjunto forman una huella única.

Citar esto