Translation numbers for a class of maps on the dynamical systems arising from quasicrystals in the real line

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

8 Citas (Scopus)

Resumen

In this paper, we study translation sets for non-decreasing maps of the real line with a pattern-equivariant displacement with respect to a quasicrystal. First, we establish a correspondence between these maps and self maps of the continuous hull associated with the quasicrystal that are homotopic to the identity and preserve orientation. Then, by using first-return times and induced maps, we provide a partial description for the translation set of the latter maps in the case where they have fixed points and obtain the existence of a unique translation number in the case where they do not have fixed points. Finally, we investigate the existence of a semiconjugacy from a fixed-point-free map homotopic to the identity on the hull to the translation given by its translation number. We concentrate on semiconjugacies that are also homotopic to the identity and, under a boundedness condition, we prove a generalization of Poincarés theorem, finding a sufficient condition for such a semiconjugacy to exist depending on the translation number of the given map.

Idioma originalInglés
Páginas (desde-hasta)565-594
Número de páginas30
PublicaciónErgodic Theory and Dynamical Systems
Volumen30
N.º2
DOI
EstadoPublicada - abr 2010

Áreas temáticas de ASJC Scopus

  • Matemáticas (todo)
  • Matemáticas aplicadas

Huella

Profundice en los temas de investigación de 'Translation numbers for a class of maps on the dynamical systems arising from quasicrystals in the real line'. En conjunto forman una huella única.

Citar esto