Topological regularization and self-duality in four-dimensional anti-de Sitter gravity

Olivera Mišković, Rodrigo Olea

Resultado de la investigación: Contribución a una revistaArtículo

66 Citas (Scopus)


It is shown that the addition of a topological invariant (Gauss-Bonnet term) to the anti-de Sitter gravity action in four dimensions recovers the standard regularization given by the holographic renormalization procedure. This crucial step makes possible the inclusion of an odd parity invariant (Pontryagin term) whose coupling is fixed by demanding an asymptotic (anti) self-dual condition on the Weyl tensor. This argument allows one to find the dual point of the theory where the holographic stress tensor is related to the boundary Cotton tensor as Tji=±(2/8πG)Cji, which has been observed in recent literature in solitonic solutions and hydrodynamic models. A general procedure to generate the counterterm series for anti-de Sitter gravity in any even dimension from the corresponding Euler term is also briefly discussed.

Idioma originalInglés
Número de artículo124020
PublicaciónPhysical Review D - Particles, Fields, Gravitation and Cosmology
EstadoPublicada - 15 jun 2009

Áreas temáticas de ASJC Scopus

  • Física nuclear y de alta energía
  • Física y astronomía (miscelánea)

Huella Profundice en los temas de investigación de 'Topological regularization and self-duality in four-dimensional anti-de Sitter gravity'. En conjunto forman una huella única.

  • Citar esto