TY - JOUR
T1 - The Type VI Secretion System Encoded in SPI-6 Plays a Role in Gastrointestinal Colonization and Systemic Spread of Salmonella enterica serovar Typhimurium in the Chicken
AU - Pezoa, David
AU - Yang, Hee Jeong
AU - Blondel, Carlos J.
AU - Santiviago, Carlos A.
AU - Andrews-Polymenis, Helene L.
AU - Contreras, Inés
PY - 2013/5/14
Y1 - 2013/5/14
N2 - The role of the Salmonella Pathogenicity Islands (SPIs) in pathogenesis of Salmonella enterica Typhimurium infection in the chicken is poorly studied, while many studies have been completed in murine models. The Type VI Secretion System (T6SS) is a recently described protein secretion system in Gram-negative bacteria. The genus Salmonella contains five phylogenetically distinct T6SS encoded in differentially distributed genomic islands. S. Typhimurium harbors a T6SS encoded in SPI-6 (T6SSSPI-6), which contributes to the ability of Salmonella to colonize mice. On the other hand, serotype Gallinarum harbors a T6SS encoded in SPI-19 (T6SSSPI-19) that is required for colonization of chicks. In this work, we investigated the role of T6SSSPI-6 in infection of chicks by S. Typhimurium. Oral infection of White Leghorn chicks showed that a ΔT6SSSPI-6 mutant had reduced colonization of the gut and internal organs, compared with the wild-type strain. Transfer of the intact T6SSSPI-6 gene cluster into the T6SS mutant restored bacterial colonization. In addition, our results showed that transfer of T6SSSPI-19 from S. Gallinarum to the ΔT6SSSPI-6 mutant of S. Typhimurium not only complemented the colonization defect but also resulted in a transient increase in the colonization of the cecum and ileum of chicks at days 1 and 3 post-infection. Our data indicates that T6SSSPI-6 contributes to chicken colonization and suggests that both T6SSSPI-6 and T6SSSPI-19 perform similar functions in vivo despite belonging to different phylogenetic families.
AB - The role of the Salmonella Pathogenicity Islands (SPIs) in pathogenesis of Salmonella enterica Typhimurium infection in the chicken is poorly studied, while many studies have been completed in murine models. The Type VI Secretion System (T6SS) is a recently described protein secretion system in Gram-negative bacteria. The genus Salmonella contains five phylogenetically distinct T6SS encoded in differentially distributed genomic islands. S. Typhimurium harbors a T6SS encoded in SPI-6 (T6SSSPI-6), which contributes to the ability of Salmonella to colonize mice. On the other hand, serotype Gallinarum harbors a T6SS encoded in SPI-19 (T6SSSPI-19) that is required for colonization of chicks. In this work, we investigated the role of T6SSSPI-6 in infection of chicks by S. Typhimurium. Oral infection of White Leghorn chicks showed that a ΔT6SSSPI-6 mutant had reduced colonization of the gut and internal organs, compared with the wild-type strain. Transfer of the intact T6SSSPI-6 gene cluster into the T6SS mutant restored bacterial colonization. In addition, our results showed that transfer of T6SSSPI-19 from S. Gallinarum to the ΔT6SSSPI-6 mutant of S. Typhimurium not only complemented the colonization defect but also resulted in a transient increase in the colonization of the cecum and ileum of chicks at days 1 and 3 post-infection. Our data indicates that T6SSSPI-6 contributes to chicken colonization and suggests that both T6SSSPI-6 and T6SSSPI-19 perform similar functions in vivo despite belonging to different phylogenetic families.
UR - http://www.scopus.com/inward/record.url?scp=84877728722&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0063917
DO - 10.1371/journal.pone.0063917
M3 - Article
C2 - 23691117
AN - SCOPUS:84877728722
SN - 1932-6203
VL - 8
JO - PLoS ONE
JF - PLoS ONE
IS - 5
M1 - e63917
ER -