The Gaia -ESO Survey: The N/O abundance ratio in the Milky Way?

L. Magrini, F. Vincenzo, S. Randich, E. Pancino, G. Casali, G. Tautvaišien, A. Drazdauskas, S. Mikolaitis, R. Minkevičiūt, E. Stonkut, Y. Chorniy, V. Bagdonas, G. Kordopatis, E. Friel, V. Roccatagliata, F. M. Jiménez-Esteban, G. Gilmore, A. Vallenari, T. Bensby, A. BragagliaA. J. Korn, A. C. Lanzafame, R. Smiljanic, A. Bayo, A. R. Casey, M. T. Costado, E. Franciosini, A. Hourihane, P. Jofré, J. Lewis, L. Monaco, L. Morbidelli, G. Sacco, C. Worley

Resultado de la investigación: Article

Resumen

Context. The abundance ratio N/O is a useful tool to study the interplay of galactic processes, for example star formation e ciency, timescale of infall, and outflow loading factor. Aims. We aim to trace log(N/O) versus [Fe/H] in the Milky Way and to compare this ratio with a set of chemical evolution models to understand the role of infall, outflow, and star formation e ciency in the building up of the Galactic disc. Methods. We used the abundances from IDR2-3, IDR4, IDR5 data releases of the Gaia-ESO Survey both for Galactic field and open cluster stars. We determined membership and average composition of open clusters and we separated thin and thick disc field stars. We considered the e ect of mixing in the abundance of N in giant stars. We computed a grid of chemical evolution models, suited to reproduce the main features of our Galaxy, exploring the e ects of the star formation e ciency, infall timescale, and di erential outflow. Results. With our samples, we map the metallicity range0:6 [Fe/H] 0.3 with a corresponding1:2 log(N/O) 0:2, where the secondary production of N dominates. Thanks to the wide range of Galactocentric distances covered by our samples, we can distinguish the behaviour of log(N/O) in di erent parts of the Galaxy. Conclusions. Our spatially resolved results allow us to distinguish di erences in the evolution of N/O with Galactocentric radius. Comparing the data with our models, we can characterise the radial regions of our Galaxy. A shorter infall timescale is needed in the inner regions, while the outer regions need a longer infall timescale, coupled with a higher star formation e ciency. We compare our results with nebular abundances obtained in MaNGA galaxies, finding in our Galaxy a much wider range of log(N/O) than in integrated observations of external galaxies of similar stellar mass, but similar to the ranges found in studies of individual H II regions.

Idioma originalEnglish
Número de artículo33224
PublicaciónAstronomy and Astrophysics
Volumen618
DOI
EstadoPublished - 1 oct 2018

Huella dactilar

European Southern Observatory
galaxies
timescale
outflow
star formation
open clusters
chemical evolution
secondary production
giant stars
star distribution
H II regions
stellar mass
metallicity
grids
stars
radii
chemical

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Citar esto

Magrini, L., Vincenzo, F., Randich, S., Pancino, E., Casali, G., Tautvaišien, G., ... Worley, C. (2018). The Gaia -ESO Survey: The N/O abundance ratio in the Milky Way? Astronomy and Astrophysics, 618, [33224]. https://doi.org/10.1051/0004-6361/201833224
Magrini, L. ; Vincenzo, F. ; Randich, S. ; Pancino, E. ; Casali, G. ; Tautvaišien, G. ; Drazdauskas, A. ; Mikolaitis, S. ; Minkevičiūt, R. ; Stonkut, E. ; Chorniy, Y. ; Bagdonas, V. ; Kordopatis, G. ; Friel, E. ; Roccatagliata, V. ; Jiménez-Esteban, F. M. ; Gilmore, G. ; Vallenari, A. ; Bensby, T. ; Bragaglia, A. ; Korn, A. J. ; Lanzafame, A. C. ; Smiljanic, R. ; Bayo, A. ; Casey, A. R. ; Costado, M. T. ; Franciosini, E. ; Hourihane, A. ; Jofré, P. ; Lewis, J. ; Monaco, L. ; Morbidelli, L. ; Sacco, G. ; Worley, C. / The Gaia -ESO Survey : The N/O abundance ratio in the Milky Way?. En: Astronomy and Astrophysics. 2018 ; Vol. 618.
@article{01ea763a9f1d40c3ae7922de4956b7e5,
title = "The Gaia -ESO Survey: The N/O abundance ratio in the Milky Way?",
abstract = "Context. The abundance ratio N/O is a useful tool to study the interplay of galactic processes, for example star formation e ciency, timescale of infall, and outflow loading factor. Aims. We aim to trace log(N/O) versus [Fe/H] in the Milky Way and to compare this ratio with a set of chemical evolution models to understand the role of infall, outflow, and star formation e ciency in the building up of the Galactic disc. Methods. We used the abundances from IDR2-3, IDR4, IDR5 data releases of the Gaia-ESO Survey both for Galactic field and open cluster stars. We determined membership and average composition of open clusters and we separated thin and thick disc field stars. We considered the e ect of mixing in the abundance of N in giant stars. We computed a grid of chemical evolution models, suited to reproduce the main features of our Galaxy, exploring the e ects of the star formation e ciency, infall timescale, and di erential outflow. Results. With our samples, we map the metallicity range0:6 [Fe/H] 0.3 with a corresponding1:2 log(N/O) 0:2, where the secondary production of N dominates. Thanks to the wide range of Galactocentric distances covered by our samples, we can distinguish the behaviour of log(N/O) in di erent parts of the Galaxy. Conclusions. Our spatially resolved results allow us to distinguish di erences in the evolution of N/O with Galactocentric radius. Comparing the data with our models, we can characterise the radial regions of our Galaxy. A shorter infall timescale is needed in the inner regions, while the outer regions need a longer infall timescale, coupled with a higher star formation e ciency. We compare our results with nebular abundances obtained in MaNGA galaxies, finding in our Galaxy a much wider range of log(N/O) than in integrated observations of external galaxies of similar stellar mass, but similar to the ranges found in studies of individual H II regions.",
keywords = "Galaxy: abundances, Galaxy: disk, Open clusters and associations: general",
author = "L. Magrini and F. Vincenzo and S. Randich and E. Pancino and G. Casali and G. Tautvaišien and A. Drazdauskas and S. Mikolaitis and R. Minkevičiūt and E. Stonkut and Y. Chorniy and V. Bagdonas and G. Kordopatis and E. Friel and V. Roccatagliata and Jim{\'e}nez-Esteban, {F. M.} and G. Gilmore and A. Vallenari and T. Bensby and A. Bragaglia and Korn, {A. J.} and Lanzafame, {A. C.} and R. Smiljanic and A. Bayo and Casey, {A. R.} and Costado, {M. T.} and E. Franciosini and A. Hourihane and P. Jofr{\'e} and J. Lewis and L. Monaco and L. Morbidelli and G. Sacco and C. Worley",
year = "2018",
month = "10",
day = "1",
doi = "10.1051/0004-6361/201833224",
language = "English",
volume = "618",
journal = "Astronomy and Astrophysics",
issn = "0004-6361",
publisher = "EDP Sciences",

}

Magrini, L, Vincenzo, F, Randich, S, Pancino, E, Casali, G, Tautvaišien, G, Drazdauskas, A, Mikolaitis, S, Minkevičiūt, R, Stonkut, E, Chorniy, Y, Bagdonas, V, Kordopatis, G, Friel, E, Roccatagliata, V, Jiménez-Esteban, FM, Gilmore, G, Vallenari, A, Bensby, T, Bragaglia, A, Korn, AJ, Lanzafame, AC, Smiljanic, R, Bayo, A, Casey, AR, Costado, MT, Franciosini, E, Hourihane, A, Jofré, P, Lewis, J, Monaco, L, Morbidelli, L, Sacco, G & Worley, C 2018, 'The Gaia -ESO Survey: The N/O abundance ratio in the Milky Way?', Astronomy and Astrophysics, vol. 618, 33224. https://doi.org/10.1051/0004-6361/201833224

The Gaia -ESO Survey : The N/O abundance ratio in the Milky Way? / Magrini, L.; Vincenzo, F.; Randich, S.; Pancino, E.; Casali, G.; Tautvaišien, G.; Drazdauskas, A.; Mikolaitis, S.; Minkevičiūt, R.; Stonkut, E.; Chorniy, Y.; Bagdonas, V.; Kordopatis, G.; Friel, E.; Roccatagliata, V.; Jiménez-Esteban, F. M.; Gilmore, G.; Vallenari, A.; Bensby, T.; Bragaglia, A.; Korn, A. J.; Lanzafame, A. C.; Smiljanic, R.; Bayo, A.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G.; Worley, C.

En: Astronomy and Astrophysics, Vol. 618, 33224, 01.10.2018.

Resultado de la investigación: Article

TY - JOUR

T1 - The Gaia -ESO Survey

T2 - The N/O abundance ratio in the Milky Way?

AU - Magrini, L.

AU - Vincenzo, F.

AU - Randich, S.

AU - Pancino, E.

AU - Casali, G.

AU - Tautvaišien, G.

AU - Drazdauskas, A.

AU - Mikolaitis, S.

AU - Minkevičiūt, R.

AU - Stonkut, E.

AU - Chorniy, Y.

AU - Bagdonas, V.

AU - Kordopatis, G.

AU - Friel, E.

AU - Roccatagliata, V.

AU - Jiménez-Esteban, F. M.

AU - Gilmore, G.

AU - Vallenari, A.

AU - Bensby, T.

AU - Bragaglia, A.

AU - Korn, A. J.

AU - Lanzafame, A. C.

AU - Smiljanic, R.

AU - Bayo, A.

AU - Casey, A. R.

AU - Costado, M. T.

AU - Franciosini, E.

AU - Hourihane, A.

AU - Jofré, P.

AU - Lewis, J.

AU - Monaco, L.

AU - Morbidelli, L.

AU - Sacco, G.

AU - Worley, C.

PY - 2018/10/1

Y1 - 2018/10/1

N2 - Context. The abundance ratio N/O is a useful tool to study the interplay of galactic processes, for example star formation e ciency, timescale of infall, and outflow loading factor. Aims. We aim to trace log(N/O) versus [Fe/H] in the Milky Way and to compare this ratio with a set of chemical evolution models to understand the role of infall, outflow, and star formation e ciency in the building up of the Galactic disc. Methods. We used the abundances from IDR2-3, IDR4, IDR5 data releases of the Gaia-ESO Survey both for Galactic field and open cluster stars. We determined membership and average composition of open clusters and we separated thin and thick disc field stars. We considered the e ect of mixing in the abundance of N in giant stars. We computed a grid of chemical evolution models, suited to reproduce the main features of our Galaxy, exploring the e ects of the star formation e ciency, infall timescale, and di erential outflow. Results. With our samples, we map the metallicity range0:6 [Fe/H] 0.3 with a corresponding1:2 log(N/O) 0:2, where the secondary production of N dominates. Thanks to the wide range of Galactocentric distances covered by our samples, we can distinguish the behaviour of log(N/O) in di erent parts of the Galaxy. Conclusions. Our spatially resolved results allow us to distinguish di erences in the evolution of N/O with Galactocentric radius. Comparing the data with our models, we can characterise the radial regions of our Galaxy. A shorter infall timescale is needed in the inner regions, while the outer regions need a longer infall timescale, coupled with a higher star formation e ciency. We compare our results with nebular abundances obtained in MaNGA galaxies, finding in our Galaxy a much wider range of log(N/O) than in integrated observations of external galaxies of similar stellar mass, but similar to the ranges found in studies of individual H II regions.

AB - Context. The abundance ratio N/O is a useful tool to study the interplay of galactic processes, for example star formation e ciency, timescale of infall, and outflow loading factor. Aims. We aim to trace log(N/O) versus [Fe/H] in the Milky Way and to compare this ratio with a set of chemical evolution models to understand the role of infall, outflow, and star formation e ciency in the building up of the Galactic disc. Methods. We used the abundances from IDR2-3, IDR4, IDR5 data releases of the Gaia-ESO Survey both for Galactic field and open cluster stars. We determined membership and average composition of open clusters and we separated thin and thick disc field stars. We considered the e ect of mixing in the abundance of N in giant stars. We computed a grid of chemical evolution models, suited to reproduce the main features of our Galaxy, exploring the e ects of the star formation e ciency, infall timescale, and di erential outflow. Results. With our samples, we map the metallicity range0:6 [Fe/H] 0.3 with a corresponding1:2 log(N/O) 0:2, where the secondary production of N dominates. Thanks to the wide range of Galactocentric distances covered by our samples, we can distinguish the behaviour of log(N/O) in di erent parts of the Galaxy. Conclusions. Our spatially resolved results allow us to distinguish di erences in the evolution of N/O with Galactocentric radius. Comparing the data with our models, we can characterise the radial regions of our Galaxy. A shorter infall timescale is needed in the inner regions, while the outer regions need a longer infall timescale, coupled with a higher star formation e ciency. We compare our results with nebular abundances obtained in MaNGA galaxies, finding in our Galaxy a much wider range of log(N/O) than in integrated observations of external galaxies of similar stellar mass, but similar to the ranges found in studies of individual H II regions.

KW - Galaxy: abundances

KW - Galaxy: disk

KW - Open clusters and associations: general

UR - http://www.scopus.com/inward/record.url?scp=85056145632&partnerID=8YFLogxK

U2 - 10.1051/0004-6361/201833224

DO - 10.1051/0004-6361/201833224

M3 - Article

AN - SCOPUS:85056145632

VL - 618

JO - Astronomy and Astrophysics

JF - Astronomy and Astrophysics

SN - 0004-6361

M1 - 33224

ER -

Magrini L, Vincenzo F, Randich S, Pancino E, Casali G, Tautvaišien G y otros. The Gaia -ESO Survey: The N/O abundance ratio in the Milky Way? Astronomy and Astrophysics. 2018 oct 1;618. 33224. https://doi.org/10.1051/0004-6361/201833224