TY - JOUR
T1 - Test–Retest Reliability of Concentric and Eccentric Muscle Strength in Knee Flexion–Extension Controlled by Functional Electromechanical Dynamometry in female Soccer
AU - Andrades-Ramírez, Oscar
AU - Ulloa-Díaz, David
AU - Rodríguez-Perea, Angela
AU - Araya-Sierralta, Sergio
AU - Guede-Rojas, Francisco
AU - Muñoz-Bustos, Gustavo
AU - Chirosa-Ríos, Luis Javier
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/10
Y1 - 2024/10
N2 - In the field of sports performance, sports medicine, and physical rehabilitation, there is a great interest in the development of protocols and reliable techniques and instruments for the evaluation of strength produced by athletes. In the last ten years, women’s football has increased its popularity and participation in numerous countries, which has contributed to players developing more professionally and requiring more specific muscle strength training to improve their performance. The aim of this study was to analyze the absolute and relative test–retest reliabilities of peak muscle strength in knee flexion (FLE) and extension (EXT) controlled using a functional electromechanical dynamometer (FEMD) in a group of seventeen professional female soccer players (age = 18.64 ± 0.62 years; weight = 54.72 ± 7.03 kg; height = 1.58 ± 0.04 m; BMI = 21.62 ± 2.70 kg/m2). Peak muscle strength was measured with knee flexion (FLE) and extension (EXT) movements at a speed of 0.4 m·s−1 unilaterally in a concentric phase (CON) and an eccentric phase (ECC). No significant mean differences were found in the test–retest analysis (p > 0.05; effect size < 0.14), and high reliability was reported for peak muscle strength assessments in both the CON (ICC) = 0.90–0.95) and the ECC (ICC = 0.85–0.97). Furthermore, stable repeatability was presented for extension in the CON (CV = 7.39–9.91%) and ECC (CV = 8.65–13.64). The main findings of this study show that peak muscle strength in knee flexion and extension in CON and ECC is a measure with acceptable absolute reliability and extremely high relative reliability using the FEMD in professional female soccer players.
AB - In the field of sports performance, sports medicine, and physical rehabilitation, there is a great interest in the development of protocols and reliable techniques and instruments for the evaluation of strength produced by athletes. In the last ten years, women’s football has increased its popularity and participation in numerous countries, which has contributed to players developing more professionally and requiring more specific muscle strength training to improve their performance. The aim of this study was to analyze the absolute and relative test–retest reliabilities of peak muscle strength in knee flexion (FLE) and extension (EXT) controlled using a functional electromechanical dynamometer (FEMD) in a group of seventeen professional female soccer players (age = 18.64 ± 0.62 years; weight = 54.72 ± 7.03 kg; height = 1.58 ± 0.04 m; BMI = 21.62 ± 2.70 kg/m2). Peak muscle strength was measured with knee flexion (FLE) and extension (EXT) movements at a speed of 0.4 m·s−1 unilaterally in a concentric phase (CON) and an eccentric phase (ECC). No significant mean differences were found in the test–retest analysis (p > 0.05; effect size < 0.14), and high reliability was reported for peak muscle strength assessments in both the CON (ICC) = 0.90–0.95) and the ECC (ICC = 0.85–0.97). Furthermore, stable repeatability was presented for extension in the CON (CV = 7.39–9.91%) and ECC (CV = 8.65–13.64). The main findings of this study show that peak muscle strength in knee flexion and extension in CON and ECC is a measure with acceptable absolute reliability and extremely high relative reliability using the FEMD in professional female soccer players.
KW - dynamometer
KW - female soccer
KW - muscle strength
KW - reliability
UR - http://www.scopus.com/inward/record.url?scp=85206571688&partnerID=8YFLogxK
U2 - 10.3390/app14198744
DO - 10.3390/app14198744
M3 - Article
AN - SCOPUS:85206571688
SN - 2076-3417
VL - 14
JO - Applied Sciences (Switzerland)
JF - Applied Sciences (Switzerland)
IS - 19
M1 - 8744
ER -