Superforms in six-dimensional superspace

Cesar Arias, William D. Linch, Alexander K. Ridgway

Resultado de la investigación: Contribución a una revistaArtículo

10 Citas (Scopus)

Resumen

Abstract: We investigate the complex of differential forms in curved, six-dimensional, N = (1,0) superspace. The superconformal group acts on this complex by super-Weyl transformations. An ambi-twistor-like representation of a second conformal group arises on a pure spinor subspace of the cotangent space. The p-forms are defined by super-Weyl-covariant tensor fields on this pure spinor subspace. The on-shell dynamics of such fields is superconformal. We construct the superspace de Rham complex by successively obstructing the closure of forms. We then extend the analysis to composite forms obtained by wedging together forms of lower degree. Finally, we comment on applications to integration in curved superspace and propose a superspace formulation of the abelian limit of the nonabelian tensor hierarchy of N = (1, 0) superconformal models.

Idioma originalInglés
Número de artículo16
PublicaciónJournal of High Energy Physics
Volumen2016
N.º5
DOI
EstadoPublicada - 1 may 2016

Áreas temáticas de ASJC Scopus

  • Física nuclear y de alta energía

Huella Profundice en los temas de investigación de 'Superforms in six-dimensional superspace'. En conjunto forman una huella única.

  • Citar esto