4-Coinage Metal Tetrahedral Superatoms as Useful Building Blocks Related to Pyramidal Au20 Clusters (M = Cu, Ag, Au). Electronic and Bonding Properties from Relativistic DFT Calculations: Coinage Metal Tetrahedral Superatoms as Useful Building Blocks Related to Pyramidal Au20 Clusters (M = Cu, Ag, Au). Electronic and Bonding Properties from Relativistic DFT Calculations

Franck Gam, Ramiro Arratia-Pérez, Samia Kahlal, Jean Yves Saillard, Alvaro Muñoz-Castro

Resultado de la investigación: Article

  • 3 Citas

Resumen

Characterization of the tetrahedral Au20 structure in the gas phase remains a major landmark in gold cluster chemistry, where further efforts to stabilize this bare 20-electron superatom in solution to extend and understand its chemistry have failed so far. Here, we account for the structural, electronic, and bonding properties of [M16Ni24(CO)40]4- (M = Cu, Ag, Au) observed in solution for gold and silver. Our results show a direct electronic relationship with Au20, owing that such species share a common tetrahedral [M16]4- central core with a 1S21P61D102S2 jellium configuration. In the case of Au20, the [Au16]4- core is capped by four Au+ ions, whereas in [M16Ni24(CO)40]4- it is capped by four Ni6(CO)10 units. In both cases, the capping entities are a full part of the superatom entity, where it appears that the free (uncapped) [M16]4- species must be capped for further stabilization. It follows that the Ni6(CO)10 units in [M16Ni24(CO)40]4- should not be considered as external ligands as their bonding with the [M16]4- core is mainly associated with a delocalization of the 20 jellium electrons onto the Ni atoms. Thus, the [M16Ni24(CO)40]4- species can be seen as the solution version of tetrahedral M20 clusters, encouraging experimental efforts to further develop the chemistry of such complexes as M(111) finite surface section structures, with M = Ag and Au and, particularly promising, with M = Cu. Furthermore, optical properties were simulated to assist future experimental characterization.

IdiomaEnglish
Páginas4723-4730
Número de páginas8
PublicaciónJournal of Physical Chemistry C
Volumen122
Número de edición8
DOI
EstadoPublished - 1 mar 2018

Huella dactilar

Coinage
Carbon Monoxide
Discrete Fourier transforms
Metals
chemistry
Gold
electronics
metals
gold
landmarks
Electrons
Silver
electrons
Optical properties
Stabilization
stabilization
Ligands
silver
vapor phases
optical properties

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Citar esto

@article{d16254e84cc04c6ab3eb4863ec082507,
title = "4-Coinage Metal Tetrahedral Superatoms as Useful Building Blocks Related to Pyramidal Au20 Clusters (M = Cu, Ag, Au). Electronic and Bonding Properties from Relativistic DFT Calculations: Coinage Metal Tetrahedral Superatoms as Useful Building Blocks Related to Pyramidal Au20 Clusters (M = Cu, Ag, Au). Electronic and Bonding Properties from Relativistic DFT Calculations",
abstract = "Characterization of the tetrahedral Au20 structure in the gas phase remains a major landmark in gold cluster chemistry, where further efforts to stabilize this bare 20-electron superatom in solution to extend and understand its chemistry have failed so far. Here, we account for the structural, electronic, and bonding properties of [M16Ni24(CO)40]4- (M = Cu, Ag, Au) observed in solution for gold and silver. Our results show a direct electronic relationship with Au20, owing that such species share a common tetrahedral [M16]4- central core with a 1S21P61D102S2 jellium configuration. In the case of Au20, the [Au16]4- core is capped by four Au+ ions, whereas in [M16Ni24(CO)40]4- it is capped by four Ni6(CO)10 units. In both cases, the capping entities are a full part of the superatom entity, where it appears that the free (uncapped) [M16]4- species must be capped for further stabilization. It follows that the Ni6(CO)10 units in [M16Ni24(CO)40]4- should not be considered as external ligands as their bonding with the [M16]4- core is mainly associated with a delocalization of the 20 jellium electrons onto the Ni atoms. Thus, the [M16Ni24(CO)40]4- species can be seen as the solution version of tetrahedral M20 clusters, encouraging experimental efforts to further develop the chemistry of such complexes as M(111) finite surface section structures, with M = Ag and Au and, particularly promising, with M = Cu. Furthermore, optical properties were simulated to assist future experimental characterization.",
author = "Franck Gam and Ramiro Arratia-P{\'e}rez and Samia Kahlal and Saillard, {Jean Yves} and Alvaro Mu{\~n}oz-Castro",
year = "2018",
month = "3",
day = "1",
doi = "10.1021/acs.jpcc.8b00227",
language = "English",
volume = "122",
pages = "4723--4730",
journal = "Journal of Physical Chemistry C",
issn = "1932-7447",
publisher = "American Chemical Society",
number = "8",

}

TY - JOUR

T1 - 4-Coinage Metal Tetrahedral Superatoms as Useful Building Blocks Related to Pyramidal Au20 Clusters (M = Cu, Ag, Au). Electronic and Bonding Properties from Relativistic DFT Calculations

T2 - Journal of Physical Chemistry C

AU - Gam, Franck

AU - Arratia-Pérez, Ramiro

AU - Kahlal, Samia

AU - Saillard, Jean Yves

AU - Muñoz-Castro, Alvaro

PY - 2018/3/1

Y1 - 2018/3/1

N2 - Characterization of the tetrahedral Au20 structure in the gas phase remains a major landmark in gold cluster chemistry, where further efforts to stabilize this bare 20-electron superatom in solution to extend and understand its chemistry have failed so far. Here, we account for the structural, electronic, and bonding properties of [M16Ni24(CO)40]4- (M = Cu, Ag, Au) observed in solution for gold and silver. Our results show a direct electronic relationship with Au20, owing that such species share a common tetrahedral [M16]4- central core with a 1S21P61D102S2 jellium configuration. In the case of Au20, the [Au16]4- core is capped by four Au+ ions, whereas in [M16Ni24(CO)40]4- it is capped by four Ni6(CO)10 units. In both cases, the capping entities are a full part of the superatom entity, where it appears that the free (uncapped) [M16]4- species must be capped for further stabilization. It follows that the Ni6(CO)10 units in [M16Ni24(CO)40]4- should not be considered as external ligands as their bonding with the [M16]4- core is mainly associated with a delocalization of the 20 jellium electrons onto the Ni atoms. Thus, the [M16Ni24(CO)40]4- species can be seen as the solution version of tetrahedral M20 clusters, encouraging experimental efforts to further develop the chemistry of such complexes as M(111) finite surface section structures, with M = Ag and Au and, particularly promising, with M = Cu. Furthermore, optical properties were simulated to assist future experimental characterization.

AB - Characterization of the tetrahedral Au20 structure in the gas phase remains a major landmark in gold cluster chemistry, where further efforts to stabilize this bare 20-electron superatom in solution to extend and understand its chemistry have failed so far. Here, we account for the structural, electronic, and bonding properties of [M16Ni24(CO)40]4- (M = Cu, Ag, Au) observed in solution for gold and silver. Our results show a direct electronic relationship with Au20, owing that such species share a common tetrahedral [M16]4- central core with a 1S21P61D102S2 jellium configuration. In the case of Au20, the [Au16]4- core is capped by four Au+ ions, whereas in [M16Ni24(CO)40]4- it is capped by four Ni6(CO)10 units. In both cases, the capping entities are a full part of the superatom entity, where it appears that the free (uncapped) [M16]4- species must be capped for further stabilization. It follows that the Ni6(CO)10 units in [M16Ni24(CO)40]4- should not be considered as external ligands as their bonding with the [M16]4- core is mainly associated with a delocalization of the 20 jellium electrons onto the Ni atoms. Thus, the [M16Ni24(CO)40]4- species can be seen as the solution version of tetrahedral M20 clusters, encouraging experimental efforts to further develop the chemistry of such complexes as M(111) finite surface section structures, with M = Ag and Au and, particularly promising, with M = Cu. Furthermore, optical properties were simulated to assist future experimental characterization.

UR - http://www.scopus.com/inward/record.url?scp=85042764535&partnerID=8YFLogxK

U2 - 10.1021/acs.jpcc.8b00227

DO - 10.1021/acs.jpcc.8b00227

M3 - Article

VL - 122

SP - 4723

EP - 4730

JO - Journal of Physical Chemistry C

JF - Journal of Physical Chemistry C

SN - 1932-7447

IS - 8

ER -