Spatio-temporal modelling for assessing air pollution in Santiago de Chile

Orietta Nicolis, Christian Camaño, Julio C. Marln, Sujit K. Sahu

Resultado de la investigación: Contribución a los tipos de informe/libroContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

In this work, we propose a space-time approach for studying the PM2.5 concentration in the city of Santiago de Chile. In particular, we apply the autoregressive hierarchical model proposed by [1] using the PM2.5 observations collected by a monitoring network as a response variable and numerical weather forecasts from the Weather Research and Forecasting (WRF) model as covariate together with spatial and temporal (periodic) components. The approach is able to provide short-term spatio-temporal predictions of PM2.5 concentrations on a fine spatial grid (at 1km × 1km horizontal resolution.)

Idioma originalInglés
Título de la publicación alojadaICNPAA 2016 World Congress
Subtítulo de la publicación alojada11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences
EditoresSeenith Sivasundaram
EditorialAmerican Institute of Physics Inc.
Volumen1798
ISBN (versión digital)9780735414648
DOI
EstadoPublicada - 27 ene 2017
Evento11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences, ICNPAA 2016 - La Rochelle, Francia
Duración: 4 jul 20168 jul 2016

Conferencia

Conferencia11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences, ICNPAA 2016
País/TerritorioFrancia
CiudadLa Rochelle
Período4/07/168/07/16

Áreas temáticas de ASJC Scopus

  • Física y astronomía (todo)

Huella

Profundice en los temas de investigación de 'Spatio-temporal modelling for assessing air pollution in Santiago de Chile'. En conjunto forman una huella única.

Citar esto