TY - JOUR
T1 - Solvent effect on the degree of (a)synchronicity in polar Diels-Alder reactions from the perspective of the reaction force constant analysis
AU - Yepes, Diana
AU - Martínez-Araya, Jorge I.
AU - Jaque, Pablo
N1 - Enviada a pago 02-02-2018
PY - 2018/1/1
Y1 - 2018/1/1
N2 - In this work, we computationally evaluated the influence of six different molecular solvents, described as a polarizable continuum model at the M06-2X/6–31+G(d,p) level, on the activation barrier/reaction rate, overall energy change, TS geometry, and degree of (a)synchronicity of two concerted Diels-Alder cycloadditions of acrolein (R1) and its complex with Lewis acid acroleinBH3 (R2) to cyclopentadiene. In gas-phase, we found that both exothermicity and activation barrier are only reduced by about 2.0 kcal mol−1, and the asynchronicity character of the mechanism is accentuated when BH3 is included. An increment in the solvent’s polarity lowers the activation energy of R1 by 1.3 kcal mol−1, while for R2 the reaction rate is enhanced by more than 2000 times at room temperature (i.e., the activation energy decreases by 4.5 kcal mol−1) if the highest polar media is employed. Therefore, a synergistic effect is achieved when both external agents, i.e., Lewis acid catalyst and polar solvent, are included together. This effect was ascribed to the ability of the solvent to favor the encounter between cyclopentadiene and acroleinBH3. This was validated by the asymmetry of the TS which becomes highly pronounced when either both or just BH3 is considered or the solvent’s polarity is increased. Finally, the reaction force constant reveals that an increment in the solvent’s polarity is able to turn a moderate asynchronous mechanism of the formation of the new C-C σ-bonds into a highly asynchronous one.
AB - In this work, we computationally evaluated the influence of six different molecular solvents, described as a polarizable continuum model at the M06-2X/6–31+G(d,p) level, on the activation barrier/reaction rate, overall energy change, TS geometry, and degree of (a)synchronicity of two concerted Diels-Alder cycloadditions of acrolein (R1) and its complex with Lewis acid acroleinBH3 (R2) to cyclopentadiene. In gas-phase, we found that both exothermicity and activation barrier are only reduced by about 2.0 kcal mol−1, and the asynchronicity character of the mechanism is accentuated when BH3 is included. An increment in the solvent’s polarity lowers the activation energy of R1 by 1.3 kcal mol−1, while for R2 the reaction rate is enhanced by more than 2000 times at room temperature (i.e., the activation energy decreases by 4.5 kcal mol−1) if the highest polar media is employed. Therefore, a synergistic effect is achieved when both external agents, i.e., Lewis acid catalyst and polar solvent, are included together. This effect was ascribed to the ability of the solvent to favor the encounter between cyclopentadiene and acroleinBH3. This was validated by the asymmetry of the TS which becomes highly pronounced when either both or just BH3 is considered or the solvent’s polarity is increased. Finally, the reaction force constant reveals that an increment in the solvent’s polarity is able to turn a moderate asynchronous mechanism of the formation of the new C-C σ-bonds into a highly asynchronous one.
KW - DFT calculations
KW - Diels-Alder reactions
KW - Lewis acid catalysts
KW - Reaction force
KW - Reaction force constant
KW - Reaction mechanisms
KW - Solvent effect
KW - Synchronicity
UR - http://www.scopus.com/inward/record.url?scp=85039914714&partnerID=8YFLogxK
U2 - 10.1007/s00894-017-3563-x
DO - 10.1007/s00894-017-3563-x
M3 - Article
AN - SCOPUS:85039914714
SN - 1610-2940
VL - 24
JO - Journal of Molecular Modeling
JF - Journal of Molecular Modeling
IS - 1
M1 - 33
ER -