Resumen
We study variable exponent function spaces on complete non-compact Riemannian manifolds. Using classic assumptions on the geometry, continuous embeddings between Sobolev and Hölder function spaces are obtained. We prove compact embeddings of H-invariant Sobolev spaces, where H is a compact Lie subgroup of the group of isometries of the manifold. As an application, we prove the existence of non-trivial solutions to non-homogeneous q(x)-Laplace equations.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 1379-1415 |
Número de páginas | 37 |
Publicación | Journal of Functional Analysis |
Volumen | 270 |
N.º | 4 |
DOI | |
Estado | Publicada - 15 feb. 2016 |
Áreas temáticas de ASJC Scopus
- Análisis