SIR model with social gatherings

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

We introduce an extension to Kermack and McKendrick's classic susceptible-infected-recovered (SIR) model in epidemiology, whose underlying mechanism of infection consists of individuals attending randomly generated social gatherings. This gives rise to a system of ordinary differential equations (ODEs) where the force of the infection term depends non-linearly on the proportion of infected individuals. Some specific instances yield models already studied in the literature, to which the present work provides a probabilistic foundation. The basic reproduction number is seen to depend quadratically on the average size of the gatherings, which may be helpful in understanding how restrictions on social gatherings affect the spread of the disease. We rigorously justify our model by showing that the system of ODEs is the mean-field limit of the jump Markov process corresponding to the evolution of the disease in a finite population.

Idioma originalInglés
Páginas (desde-hasta)667-684
Número de páginas18
PublicaciónJournal of Applied Probability
Volumen61
N.º2
DOI
EstadoEn prensa - 2024

Áreas temáticas de ASJC Scopus

  • Estadística y probabilidad
  • Matemáticas General
  • Estadística, probabilidad e incerteza

Huella

Profundice en los temas de investigación de 'SIR model with social gatherings'. En conjunto forman una huella única.

Citar esto