Sequence entropy and rigid σ-algebras

Alvaro Coronel, Alejandro Maass, Song Shao

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

Resumen

We study relationships between sequence entropy and the Kronecker and rigid algebras. Let (Y,y,v,T) be a factor of a measure-theoretical dynamical system (X, X, μ, T) and S be a sequence of positive integers with positive upper density. We prove there exists a subsequence ACS such that hA μ(T,ε | y) = Hμ(ε | K.(X | Y)) for all finite partitions ε, where K.(X | Y) is the Kronecker algebra over y. A similar result holds for rigid algebras over y. As an application, we characterize compact, rigid and mixing extensions via relative sequence entropy.

Idioma originalInglés
Páginas (desde-hasta)207-230
Número de páginas24
PublicaciónStudia Mathematica
Volumen194
N.º3
DOI
EstadoPublicada - 2009

Áreas temáticas de ASJC Scopus

  • Matemáticas (todo)

Huella

Profundice en los temas de investigación de 'Sequence entropy and rigid σ-algebras'. En conjunto forman una huella única.

Citar esto