Robust estimation of confidence interval in neural networks applied to time series

Rodrigo Salas, Romina Torres, Héctor Allende, Claudio Moraga

Resultado de la investigación: Contribución a una revistaArtículo

2 Citas (Scopus)


Artificial neural networks (ANN) have been widely used in regression or predictions problems and it is usually desirable that some form of confidence bound is placed on the predicted value. A number of methods have been proposed for estimating the uncertainty associated with a value predicted by a feedforward neural network (FANN), but these methods are computationally intensive or only valid under certain assumptions, which are rarely satisfied in practice. We present the theoretical results about the construction of confidence intervals in the prediction of nonlinear time series modeled by FANN, this method is based on M-estimators that are a robust learning algorithm for parameter estimation when the data set is contaminated. The confidence interval that we propose is constructed from the study of the Influence Function of the estimator. We demonstrate our technique on computer generated Time Series data.

Idioma originalInglés
Páginas (desde-hasta)441-448
Número de páginas8
PublicaciónLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EstadoPublicada - 2003

Áreas temáticas de ASJC Scopus

  • Informática (todo)
  • Bioquímica, genética y biología molecular (todo)
  • Ciencia computacional teórica

Huella Profundice en los temas de investigación de 'Robust estimation of confidence interval in neural networks applied to time series'. En conjunto forman una huella única.

  • Citar esto