TY - JOUR
T1 - Rhodococcus navarretei sp. nov. and Pseudarthrobacter quantipunctorum sp. nov., two novel species with the ability to biosynthesize fluorescent nanoparticles, isolated from soil samples at Union Glacier, Antarctica
AU - Carrasco, Valentina
AU - Vargas-Reyes, Matías
AU - Lagos-Moraga, Sebastián
AU - Dietz-Vargas, Claudio
AU - Allendes-Ormazábal, Daniela
AU - Meza-Inzunza, Juan
AU - Rojas-Morales, Fernanda
AU - Durán-Villegas, Sebastián
AU - Valenzuela-Ibaceta, Felipe
AU - Cabrera, Ma Ángeles
AU - Pérez-Donoso, José M.
N1 - Publisher Copyright:
© 2024 The Authors.
PY - 2024/10/1
Y1 - 2024/10/1
N2 - Two Gram-stain-positive bacterial strains, EXRC-4A-4T and RC-2-3T, were isolated from soil samples collected at Union Glacier, Antarctica. Based on 16S rRNA gene sequence similarity, strain EXRC-4A-4T was identified as belonging to the genus Rhodococcus, and strain RC-2-3T to the genus Pseudarthrobacter. Further genomic analyses, including average nucleotide identity and digital DNA-DNA hybridization, suggested that these strains represent new species. Strain EXRC-4A-4T exhibited growth at temperatures ranging from 4 to 28 °C (optimum between 20 and 28 °C), at pH 5.0-9.0 (optimum, pH 6.0), and in the presence of 0-5.0% NaCl (optimum between 0 and 1% NaCl). Strain RC-2-3T grew at 4-28 °C (optimum growth at 28 °C), pH 6.0-10 (optimum, pH 7.0) and in the presence of 0-5.0% NaCl (optimum, 1% NaCl). The fatty acid profile of EXRC-4A-4T was dominated by C17:1 ω-7, while that of RC-2-3T was dominated by anteiso-C15 : 0. The draft genome sequences revealed a DNA G+C content of 64.6 mol% for EXRC-4A-4T and 65.8 mol% for RC-2-3T. Based on this polyphasic study, EXRC-4A-4T and RC-2-3T represent two novel species within the genera Rhodococcus and Pseudarthrobacter, respectively. We propose the names Rhodococcus navarretei sp. nov. and Pseudarthrobacter quantipunctorum sp. nov. The type strains are Rhodococcus navarretei EXRC-4A-4T and Pseudarthrobacter quantipunctorum RC-2-3T. These strains have been deposited deposited in the CChRGM and BCCM/LMG culture collections with entry numbers RGM 3539/LMG 33621 and RGM 3538/LMG 33620, respectively.
AB - Two Gram-stain-positive bacterial strains, EXRC-4A-4T and RC-2-3T, were isolated from soil samples collected at Union Glacier, Antarctica. Based on 16S rRNA gene sequence similarity, strain EXRC-4A-4T was identified as belonging to the genus Rhodococcus, and strain RC-2-3T to the genus Pseudarthrobacter. Further genomic analyses, including average nucleotide identity and digital DNA-DNA hybridization, suggested that these strains represent new species. Strain EXRC-4A-4T exhibited growth at temperatures ranging from 4 to 28 °C (optimum between 20 and 28 °C), at pH 5.0-9.0 (optimum, pH 6.0), and in the presence of 0-5.0% NaCl (optimum between 0 and 1% NaCl). Strain RC-2-3T grew at 4-28 °C (optimum growth at 28 °C), pH 6.0-10 (optimum, pH 7.0) and in the presence of 0-5.0% NaCl (optimum, 1% NaCl). The fatty acid profile of EXRC-4A-4T was dominated by C17:1 ω-7, while that of RC-2-3T was dominated by anteiso-C15 : 0. The draft genome sequences revealed a DNA G+C content of 64.6 mol% for EXRC-4A-4T and 65.8 mol% for RC-2-3T. Based on this polyphasic study, EXRC-4A-4T and RC-2-3T represent two novel species within the genera Rhodococcus and Pseudarthrobacter, respectively. We propose the names Rhodococcus navarretei sp. nov. and Pseudarthrobacter quantipunctorum sp. nov. The type strains are Rhodococcus navarretei EXRC-4A-4T and Pseudarthrobacter quantipunctorum RC-2-3T. These strains have been deposited deposited in the CChRGM and BCCM/LMG culture collections with entry numbers RGM 3539/LMG 33621 and RGM 3538/LMG 33620, respectively.
KW - Antarctica
KW - Pseudarthrobacter
KW - quantum dots
KW - Rhodococcus
KW - Union Glacier
UR - http://www.scopus.com/inward/record.url?scp=85205605775&partnerID=8YFLogxK
U2 - 10.1099/ijsem.0.006536
DO - 10.1099/ijsem.0.006536
M3 - Article
C2 - 39361511
AN - SCOPUS:85205605775
SN - 1466-5026
VL - 74
JO - International Journal of Systematic and Evolutionary Microbiology
JF - International Journal of Systematic and Evolutionary Microbiology
IS - 10
M1 - 006536
ER -