TY - JOUR
T1 - Respiratory mechanics in infants with severe bronchiolitis on controlled mechanical ventilation
AU - Cruces, Pablo
AU - González-Dambrauskas, Sebastián
AU - Quilodrán, Julio
AU - Valenzuela, Jorge
AU - Martínez, Javier
AU - Rivero, Natalia
AU - Arias, Pablo
AU - Díaz, Franco
N1 - Funding Information:
This work was supported by CONICYT #1160631 (Dr. Cruces) and CONICYT #11160463 (Dr. Diaz) grants.
Publisher Copyright:
© 2017 The Author(s).
PY - 2017/10/6
Y1 - 2017/10/6
N2 - Background: Analysis of respiratory mechanics during mechanical ventilation (MV) is able to estimate resistive, elastic and inertial components of the working pressure of the respiratory system. Our aim was to discriminate the components of the working pressure of the respiratory system in infants on MV with severe bronchiolitis admitted to two PICU's. Methods: Infants younger than 1 year old with acute respiratory failure caused by severe bronchiolitis underwent neuromuscular blockade, tracheal intubation and volume controlled MV. Shortly after intubation studies of pulmonary mechanics were performed using inspiratory and expiratory breath hold. The maximum inspiratory and expiratory flow (QI and QE) as well as peak inspiratory (PIP), plateau (PPL) and total expiratory pressures (tPEEP) were measured. Inspiratory and expiratory resistances (RawI and RawE) and Time Constants (KTI and KTE) were calculated. Results: We included 16 patients, of median age 2.5 (1-5.8) months. Bronchiolitis due to respiratory syncytial virus was the main etiology (93.8%) and 31.3% had comorbidities. Measured respiratory pressures were PIP 29 (26-31), PPL 24 (20-26), tPEEP 9 [8-11] cmH2O. Elastic component of the working pressure was significantly higher than resistive and both higher than threshold (tPEEP - PEEP) (P < 0.01). QI was significantly lower than QE [5 (4.27-6.75) v/s 16.5 (12-23.8) L/min. RawI and RawE were 38.8 (32-53) and 40.5 (22-55) cmH2O/L/s; KTI and KTE [0.18 (0.12-0.30) v/s 0.18 (0.13-0.22) s], and KTI:KTE ratio was 1:1.04 (1:0.59-1.42). Conclusions: Analysis of respiratory mechanics of infants with severe bronchiolitis receiving MV shows that the elastic component of the working pressure of the respiratory system is the most important. The elastic and resistive components in conjunction with flow profile are characteristic of restrictive diseases. A better understanding of lung mechanics in this group of patients may lead to change the traditional ventilatory approach to severe bronchiolitis.
AB - Background: Analysis of respiratory mechanics during mechanical ventilation (MV) is able to estimate resistive, elastic and inertial components of the working pressure of the respiratory system. Our aim was to discriminate the components of the working pressure of the respiratory system in infants on MV with severe bronchiolitis admitted to two PICU's. Methods: Infants younger than 1 year old with acute respiratory failure caused by severe bronchiolitis underwent neuromuscular blockade, tracheal intubation and volume controlled MV. Shortly after intubation studies of pulmonary mechanics were performed using inspiratory and expiratory breath hold. The maximum inspiratory and expiratory flow (QI and QE) as well as peak inspiratory (PIP), plateau (PPL) and total expiratory pressures (tPEEP) were measured. Inspiratory and expiratory resistances (RawI and RawE) and Time Constants (KTI and KTE) were calculated. Results: We included 16 patients, of median age 2.5 (1-5.8) months. Bronchiolitis due to respiratory syncytial virus was the main etiology (93.8%) and 31.3% had comorbidities. Measured respiratory pressures were PIP 29 (26-31), PPL 24 (20-26), tPEEP 9 [8-11] cmH2O. Elastic component of the working pressure was significantly higher than resistive and both higher than threshold (tPEEP - PEEP) (P < 0.01). QI was significantly lower than QE [5 (4.27-6.75) v/s 16.5 (12-23.8) L/min. RawI and RawE were 38.8 (32-53) and 40.5 (22-55) cmH2O/L/s; KTI and KTE [0.18 (0.12-0.30) v/s 0.18 (0.13-0.22) s], and KTI:KTE ratio was 1:1.04 (1:0.59-1.42). Conclusions: Analysis of respiratory mechanics of infants with severe bronchiolitis receiving MV shows that the elastic component of the working pressure of the respiratory system is the most important. The elastic and resistive components in conjunction with flow profile are characteristic of restrictive diseases. A better understanding of lung mechanics in this group of patients may lead to change the traditional ventilatory approach to severe bronchiolitis.
KW - Bronchiolitis
KW - Mechanical ventilation
KW - Pediatrics
KW - Respiratory mechanics
KW - Work of breathing
UR - http://www.scopus.com/inward/record.url?scp=85030702205&partnerID=8YFLogxK
U2 - 10.1186/s12890-017-0475-6
DO - 10.1186/s12890-017-0475-6
M3 - Article
AN - SCOPUS:85030702205
SN - 1471-2466
VL - 17
JO - BMC Pulmonary Medicine
JF - BMC Pulmonary Medicine
IS - 1
M1 - 129
ER -