Quantum statistical relation for black holes in nonlinear electrodynamics coupled to Einstein-Gauss-Bonnet AdS gravity

Olivera Miskovic, Rodrigo Olea

Resultado de la investigación: Contribución a una revistaArtículo

26 Citas (Scopus)

Resumen

We consider curvature-squared corrections to Einstein-Hilbert gravity action in the form of a Gauss-Bonnet term in D>4 dimensions. In this theory, we study the thermodynamics of charged static black holes with anti-de Sitter (AdS) asymptotics, and whose electric field is described by nonlinear electrodynamics. These objects have received considerable attention in recent literature on gravity/gauge dualities. It is well-known that, within the framework of anti-de Sitter/conformal field theory (AdS/CFT) correspondence, there exists a nonvanishing Casimir contribution to the internal energy of the system, manifested as the vacuum energy for global AdS spacetime in odd dimensions. Because of this reason, we derive a quantum statistical relation directly from the Euclidean action and not from the integration of the first law of thermodynamics. To this end, we employ a background-independent regularization scheme which consists, in addition to the bulk action, of counterterms that depend on both extrinsic and intrinsic curvatures of the boundary (Kounterterm series). This procedure results in a consistent inclusion of the vacuum energy and chemical potential in the thermodynamic description for Einstein-Gauss-Bonnet AdS gravity regardless of the explicit form of the nonlinear electrodynamics Lagrangian.

Idioma originalInglés
Número de artículo064017
PublicaciónPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volumen83
N.º6
DOI
EstadoPublicada - 14 mar 2011

Áreas temáticas de ASJC Scopus

  • Física nuclear y de alta energía
  • Física y astronomía (miscelánea)

Huella Profundice en los temas de investigación de 'Quantum statistical relation for black holes in nonlinear electrodynamics coupled to Einstein-Gauss-Bonnet AdS gravity'. En conjunto forman una huella única.

  • Citar esto