Quantitative propagation of chaos for generalized kac particle systems

Roberto Cortez, Joaquin Fontbona

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)

Resumen

We study a class of one-dimensional particle systems with true (Bird type) binary interactions, which includes Kac'smodel of the Boltzmann equation and nonlinear equations for the evolution of wealth distribution arising in kinetic economic models. We obtain explicit rates of convergence for the Wasserstein distance between the law of the particles and their limiting law, which are linear in time and depend in a mild polynomial manner on the number of particles. The proof is based on a novel coupling between the particle system and a suitable system of nonindependent nonlinear processes, as well as on recent sharp estimates for empirical measures.

Idioma originalInglés
Páginas (desde-hasta)892-916
Número de páginas25
PublicaciónAnnals of Applied Probability
Volumen26
N.º2
DOI
EstadoPublicada - abr 2016

Áreas temáticas de ASJC Scopus

  • Estadística y probabilidad
  • Estadística, probabilidad e incerteza

Huella

Profundice en los temas de investigación de 'Quantitative propagation of chaos for generalized kac particle systems'. En conjunto forman una huella única.

Citar esto