TY - JOUR
T1 - Procoagulant phenotype induced by oxidized high-density lipoprotein associates with acute kidney injury and death
AU - Prado, Yolanda
AU - Pérez, Lorena
AU - Eltit, Felipe
AU - Echeverría, Cesar
AU - Llancalahuen, Felipe M.
AU - Tapia, Pablo
AU - González, Pablo A.
AU - Kalergis, Alexis M.
AU - Cabello-Verrugio, Claudio
AU - Simon, Felipe
N1 - Publisher Copyright:
© 2023
PY - 2023/3/1
Y1 - 2023/3/1
N2 - BACKGROUND: Oxidative stress derived from severe systemic inflammation promotes conversion from high-density lipoprotein HDL to oxidized HDL (oxHDL), which interacts with vascular endothelial cells (ECs). OxHDL acquires procoagulant features playing a role in modulating coagulation, which has been linked with organ failure in ICU patients. However, whether oxHDL elicits a ECs-mediated procoagulant phenotype generating organ failure and death, and the underlying molecular mechanism is not known. Therefore, we studied whether oxHDL-treated rats and high-oxHDL ICU patients exhibit a procoagulant phenotype and its association with kidney injury and mortality and the endothelial underlying molecular mechanism. METHODS: Human ECs, oxHDL-treated rats and ICU patients were subjected to several cellular and molecular studies, coagulation analyses, kidney injury assessment and mortality determination. RESULTS: OxHDL-treated ECs showed a procoagulant protein expression reprograming characterized by increased E-/P-selectin and vWF mRNA expression through specific signaling pathways. OxHDL-treated rats exhibited a procoagulant phenotype and modified E-/P-selectin, vWF, TF and t-PA mRNA expression correlating with plasma TF, t-PA and D-dimer. Also, showed increased death events and the relative risk of death, and increased creatinine, urea, BUN/creatinine ratio, KIM-1, NGAL, β2M, and decreased eGFR, all concordant with kidney injury, correlated with plasma TF, t-PA and D-dimer. ICU patients showed correlation between plasma oxHDL and increased creatinine, cystatin, BUN, BUN/creatinine ratio, KIM-1, NGAL, β2M, and decreased GFR. Notably, ICU high-oxHDL patients showed decreased survival. Interestingly, altered coagulation factors TF, t-PA and D-dimer correlated with both increased oxHDL levels and kidney injury markers, indicating a connection between these factors. CONCLUSION: Increased circulating oxHDL generates an endothelial-dependent procoagulant phenotype that associates with acute kidney injury and increased risk of death.
AB - BACKGROUND: Oxidative stress derived from severe systemic inflammation promotes conversion from high-density lipoprotein HDL to oxidized HDL (oxHDL), which interacts with vascular endothelial cells (ECs). OxHDL acquires procoagulant features playing a role in modulating coagulation, which has been linked with organ failure in ICU patients. However, whether oxHDL elicits a ECs-mediated procoagulant phenotype generating organ failure and death, and the underlying molecular mechanism is not known. Therefore, we studied whether oxHDL-treated rats and high-oxHDL ICU patients exhibit a procoagulant phenotype and its association with kidney injury and mortality and the endothelial underlying molecular mechanism. METHODS: Human ECs, oxHDL-treated rats and ICU patients were subjected to several cellular and molecular studies, coagulation analyses, kidney injury assessment and mortality determination. RESULTS: OxHDL-treated ECs showed a procoagulant protein expression reprograming characterized by increased E-/P-selectin and vWF mRNA expression through specific signaling pathways. OxHDL-treated rats exhibited a procoagulant phenotype and modified E-/P-selectin, vWF, TF and t-PA mRNA expression correlating with plasma TF, t-PA and D-dimer. Also, showed increased death events and the relative risk of death, and increased creatinine, urea, BUN/creatinine ratio, KIM-1, NGAL, β2M, and decreased eGFR, all concordant with kidney injury, correlated with plasma TF, t-PA and D-dimer. ICU patients showed correlation between plasma oxHDL and increased creatinine, cystatin, BUN, BUN/creatinine ratio, KIM-1, NGAL, β2M, and decreased GFR. Notably, ICU high-oxHDL patients showed decreased survival. Interestingly, altered coagulation factors TF, t-PA and D-dimer correlated with both increased oxHDL levels and kidney injury markers, indicating a connection between these factors. CONCLUSION: Increased circulating oxHDL generates an endothelial-dependent procoagulant phenotype that associates with acute kidney injury and increased risk of death.
KW - Biomarker
KW - Coagulation
KW - Kidney injury
KW - Oxidized lipoprotein
KW - Risk of death
UR - http://www.scopus.com/inward/record.url?scp=85149172184&partnerID=8YFLogxK
U2 - 10.1016/j.thromres.2023.01.014
DO - 10.1016/j.thromres.2023.01.014
M3 - Article
C2 - 36689805
AN - SCOPUS:85149172184
SN - 0049-3848
VL - 223
SP - 7
EP - 23
JO - Thrombosis Research
JF - Thrombosis Research
ER -