TY - JOUR
T1 - Phylogeography of the Patagonian otter Lontra provocax
T2 - Adaptive divergence to marine habitat or signature of southern glacial refugia?
AU - Vianna, Juliana A.
AU - Medina-Vogel, Gonzalo
AU - Chehébar, Claudio
AU - Sielfeld, Walter
AU - Olavarría, Carlos
AU - Faugeron, Sylvain
N1 - Funding Information:
This work was supported by Universidad Andrés Bello-DI-06-06/R, Rufford Small Grant for Nature Conservation, Earthwatch Institute and FONDECYT 1100139. Vianna was supported by a CONICYT Doctoral Fellowship, CONICYT Thesis Project AT-23070034. Special thanks to René Monsalves, Attia Zerega, Juan Carlos Marín, Gerardo Porro, Carla Pozzi, Javier Lucotti who helped with sample collection. Samples from southern Patagonia were collected by Servicio Agricola y Ganadero (SAG) after illegal hunting. Florance Tellier, Andrés Parada and Emma Newcombe helped with analysis and English. All Chilean samples were collected according to permits: Subsecretaria de Pesca (686-2006; 1588-2009; 1228-2009).
PY - 2011
Y1 - 2011
N2 - Background: A number of studies have described the extension of ice cover in western Patagonia during the Last Glacial Maximum, providing evidence of a complete cover of terrestrial habitat from 41°S to 56°S and two main refugia, one in south-eastern Tierra del Fuego and the other north of the Chiloé Island. However, recent evidence of high genetic diversity in Patagonian river species suggests the existence of aquatic refugia in this region. Here, we further test this hypothesis based on phylogeographic inferences from a semi-aquatic species that is a top predator of river and marine fauna, the huillín or Southern river otter (Lontra provocax). Results: We examined mtDNA sequences of the control region, ND5 and Cytochrome-b (2151 bp in total) in 75 samples of L. provocax from 21 locations in river and marine habitats. Phylogenetic analysis illustrates two main divergent clades for L. provocax in continental freshwater habitat. A highly diverse clade was represented by haplotypes from the marine habitat of the Southern Fjords and Channels (SFC) region (43°38' to 53°08'S), whereas only one of these haplotypes was paraphyletic and associated with northern river haplotypes. Conclusions: Our data support the hypothesis of the persistence of L. provocax in western Patagonia, south of the ice sheet limit, during last glacial maximum (41°S latitude). This limit also corresponds to a strong environmental change, which might have spurred L. provocax differentiation between the two environments.
AB - Background: A number of studies have described the extension of ice cover in western Patagonia during the Last Glacial Maximum, providing evidence of a complete cover of terrestrial habitat from 41°S to 56°S and two main refugia, one in south-eastern Tierra del Fuego and the other north of the Chiloé Island. However, recent evidence of high genetic diversity in Patagonian river species suggests the existence of aquatic refugia in this region. Here, we further test this hypothesis based on phylogeographic inferences from a semi-aquatic species that is a top predator of river and marine fauna, the huillín or Southern river otter (Lontra provocax). Results: We examined mtDNA sequences of the control region, ND5 and Cytochrome-b (2151 bp in total) in 75 samples of L. provocax from 21 locations in river and marine habitats. Phylogenetic analysis illustrates two main divergent clades for L. provocax in continental freshwater habitat. A highly diverse clade was represented by haplotypes from the marine habitat of the Southern Fjords and Channels (SFC) region (43°38' to 53°08'S), whereas only one of these haplotypes was paraphyletic and associated with northern river haplotypes. Conclusions: Our data support the hypothesis of the persistence of L. provocax in western Patagonia, south of the ice sheet limit, during last glacial maximum (41°S latitude). This limit also corresponds to a strong environmental change, which might have spurred L. provocax differentiation between the two environments.
UR - http://www.scopus.com/inward/record.url?scp=79952056443&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-11-53
DO - 10.1186/1471-2148-11-53
M3 - Article
C2 - 21356052
AN - SCOPUS:79952056443
SN - 1471-2148
VL - 11
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
IS - 1
M1 - 53
ER -