Percolation detection using convolutional deep neural networks

Esteban Iriarte, Joaquín Peralta, Claudia Loyola, Sergio Davis

Producción científica: Contribución a los tipos de informe/libroContribución a la conferenciarevisión exhaustiva

Resumen

This work describes the percolation phenomena in different structures through deep neural networks and previously calculated statistical data of percolation. Despite being relatively simple and easy to calculate at small scales, the percolation process is computationally time-consuming at large scales; here, a significant computation is necessary to determine if a cluster percolates or not. We propose to train deep neural networks on small systems and scale to large systems. Our results show a reasonable accuracy rate on recognition of images, particularly on fully convolutional neural networks for the continuum case, a recent improvement on classical convolutional neural networks, improving the recognition of percolation phenomena, portability, and scalability.

Idioma originalInglés
Título de la publicación alojadaIWoSP 2021 - International Workshop on Statistical Physics
EditoresBoris Atenas, Francisco A. Calderon, Sergio Curilef, Yuvineza Gomez-Leyton, Diego Gonzalez
EditorialAmerican Institute of Physics Inc.
ISBN (versión digital)9780735444829
DOI
EstadoPublicada - 15 may. 2023
Evento2021 International Workshop on Statistical Physics, IWoSP 2021 - Antofagasta, Chile
Duración: 1 dic. 20213 dic. 2021

Serie de la publicación

NombreAIP Conference Proceedings
Volumen2731
ISSN (versión impresa)0094-243X
ISSN (versión digital)1551-7616

Conferencia

Conferencia2021 International Workshop on Statistical Physics, IWoSP 2021
País/TerritorioChile
CiudadAntofagasta
Período1/12/213/12/21

Áreas temáticas de ASJC Scopus

  • Física y Astronomía General

Huella

Profundice en los temas de investigación de 'Percolation detection using convolutional deep neural networks'. En conjunto forman una huella única.

Citar esto