### Resumen

We address the uniqueness of the minimal couplings between higher-spin fields and gravity. These couplings are cubic vertices built from gauge non-invariant connections that induce non-abelian deformations of the gauge algebra. We show that Fradkin-Vasiliev's cubic 2-s-s vertex, which contains up to 2s-2 derivatives dressed by a cosmological constant Λ, has a limit where: (i) Λ 0; (ii) the spin-2 Weyl tensor scales non-uniformly with s; and (iii) all lower-derivative couplings are scaled away. For s = 3 the limit yields the unique non-abelian spin 2-3-3 vertex found recently by two of the authors, thereby proving the uniqueness of the corresponding FV vertex. We extend the analysis to s = 4 and a class of spin 1-s-s vertices. The non-universality of the flat limit high-lightens not only the problematic aspects of higher-spin interactions with Λ = 0 but also the strongly coupled nature of the derivative expansion of the fully nonlinear higher-spin field equations with Λ0, wherein the standard minimal couplings mediated via the Lorentz connection are subleading at energy scales (|Λ|) ^{1/2} ℓ E M _{p}. Finally, combining our results with those obtained by Metsaev, we give the complete list of all the manifestly covariant cubic couplings of the form 1-s-s and 2-s-s, in Minkowski background.

Idioma original | English |
---|---|

Número de artículo | 056 |

Publicación | Journal of High Energy Physics |

Volumen | 2008 |

N.º | 8 |

DOI | |

Estado | Published - 1 ago 2008 |

### Huella dactilar

### ASJC Scopus subject areas

- Nuclear and High Energy Physics

### Citar esto

*Journal of High Energy Physics*,

*2008*(8), [056]. https://doi.org/10.1088/1126-6708/2008/08/056

}

*Journal of High Energy Physics*, vol. 2008, n.º 8, 056. https://doi.org/10.1088/1126-6708/2008/08/056

**On the uniqueness of minimal coupling in higher-spin gauge theory.** / Boulanger, Nicolas; Sundell, Per; Leclercq, Serge.

Resultado de la investigación: Article

TY - JOUR

T1 - On the uniqueness of minimal coupling in higher-spin gauge theory

AU - Boulanger, Nicolas

AU - Sundell, Per

AU - Leclercq, Serge

PY - 2008/8/1

Y1 - 2008/8/1

N2 - We address the uniqueness of the minimal couplings between higher-spin fields and gravity. These couplings are cubic vertices built from gauge non-invariant connections that induce non-abelian deformations of the gauge algebra. We show that Fradkin-Vasiliev's cubic 2-s-s vertex, which contains up to 2s-2 derivatives dressed by a cosmological constant Λ, has a limit where: (i) Λ 0; (ii) the spin-2 Weyl tensor scales non-uniformly with s; and (iii) all lower-derivative couplings are scaled away. For s = 3 the limit yields the unique non-abelian spin 2-3-3 vertex found recently by two of the authors, thereby proving the uniqueness of the corresponding FV vertex. We extend the analysis to s = 4 and a class of spin 1-s-s vertices. The non-universality of the flat limit high-lightens not only the problematic aspects of higher-spin interactions with Λ = 0 but also the strongly coupled nature of the derivative expansion of the fully nonlinear higher-spin field equations with Λ0, wherein the standard minimal couplings mediated via the Lorentz connection are subleading at energy scales (|Λ|) 1/2 ℓ E M p. Finally, combining our results with those obtained by Metsaev, we give the complete list of all the manifestly covariant cubic couplings of the form 1-s-s and 2-s-s, in Minkowski background.

AB - We address the uniqueness of the minimal couplings between higher-spin fields and gravity. These couplings are cubic vertices built from gauge non-invariant connections that induce non-abelian deformations of the gauge algebra. We show that Fradkin-Vasiliev's cubic 2-s-s vertex, which contains up to 2s-2 derivatives dressed by a cosmological constant Λ, has a limit where: (i) Λ 0; (ii) the spin-2 Weyl tensor scales non-uniformly with s; and (iii) all lower-derivative couplings are scaled away. For s = 3 the limit yields the unique non-abelian spin 2-3-3 vertex found recently by two of the authors, thereby proving the uniqueness of the corresponding FV vertex. We extend the analysis to s = 4 and a class of spin 1-s-s vertices. The non-universality of the flat limit high-lightens not only the problematic aspects of higher-spin interactions with Λ = 0 but also the strongly coupled nature of the derivative expansion of the fully nonlinear higher-spin field equations with Λ0, wherein the standard minimal couplings mediated via the Lorentz connection are subleading at energy scales (|Λ|) 1/2 ℓ E M p. Finally, combining our results with those obtained by Metsaev, we give the complete list of all the manifestly covariant cubic couplings of the form 1-s-s and 2-s-s, in Minkowski background.

KW - BRST symmetry

KW - Gauge symmetry

UR - http://www.scopus.com/inward/record.url?scp=54749123961&partnerID=8YFLogxK

U2 - 10.1088/1126-6708/2008/08/056

DO - 10.1088/1126-6708/2008/08/056

M3 - Article

VL - 2008

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1126-6708

IS - 8

M1 - 056

ER -