On the uniqueness of minimal coupling in higher-spin gauge theory

Nicolas Boulanger, Per Sundell, Serge Leclercq

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

101 Citas (Scopus)


We address the uniqueness of the minimal couplings between higher-spin fields and gravity. These couplings are cubic vertices built from gauge non-invariant connections that induce non-abelian deformations of the gauge algebra. We show that Fradkin-Vasiliev's cubic 2-s-s vertex, which contains up to 2s-2 derivatives dressed by a cosmological constant Λ, has a limit where: (i) Λ 0; (ii) the spin-2 Weyl tensor scales non-uniformly with s; and (iii) all lower-derivative couplings are scaled away. For s = 3 the limit yields the unique non-abelian spin 2-3-3 vertex found recently by two of the authors, thereby proving the uniqueness of the corresponding FV vertex. We extend the analysis to s = 4 and a class of spin 1-s-s vertices. The non-universality of the flat limit high-lightens not only the problematic aspects of higher-spin interactions with Λ = 0 but also the strongly coupled nature of the derivative expansion of the fully nonlinear higher-spin field equations with Λ0, wherein the standard minimal couplings mediated via the Lorentz connection are subleading at energy scales (|Λ|) 1/2 ℓ E M p. Finally, combining our results with those obtained by Metsaev, we give the complete list of all the manifestly covariant cubic couplings of the form 1-s-s and 2-s-s, in Minkowski background.

Idioma originalInglés
Número de artículo056
PublicaciónJournal of High Energy Physics
EstadoPublicada - 1 ago 2008

Áreas temáticas de ASJC Scopus

  • Física nuclear y de alta energía


Profundice en los temas de investigación de 'On the uniqueness of minimal coupling in higher-spin gauge theory'. En conjunto forman una huella única.

Citar esto