Resumen
We describe a holographic approach to explicitly computing the universal logarithmic contributions to entanglement and Renyi entropies for free conformal scalar and spinor fields on even-dimensional spheres. This holographic derivation proceeds in two steps: first, following Casini and Huerta, a conformal mapping to thermal entropy in a hyperbolic geometry; then identification of the hyperbolic geometry with the conformal boundary of a bulk hyperbolic space and use of an AdS/CFT holographic formula to compute the resultant functional determinant. We explicitly verify the connection with the type-A trace anomaly for the entanglement entropy, whereas the Renyi entropy is computed with the aid of the Sommerfeld formula in order to deal with a conical defect. We show that as a by-product, the log coefficient of the Renyi entropy for round spheres can be efficiently obtained as the q-analog of a procedure similar to the one found by Cappelli and D'Appollonio that rendered the type-A trace anomaly.
Idioma original | Inglés |
---|---|
Número de artículo | 105401 |
Publicación | Journal of Physics A: Mathematical and Theoretical |
Volumen | 48 |
N.º | 10 |
DOI | |
Estado | Publicada - 13 mar. 2015 |
Áreas temáticas de ASJC Scopus
- Física estadística y no lineal
- Estadística y probabilidad
- Modelización y simulación
- Física matemática
- Física y Astronomía General