On Renyi entropy for free conformal fields: Holographic and q-analog recipes

R. Aros, F. Bugini, D. E. Diaz

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)


We describe a holographic approach to explicitly computing the universal logarithmic contributions to entanglement and Renyi entropies for free conformal scalar and spinor fields on even-dimensional spheres. This holographic derivation proceeds in two steps: first, following Casini and Huerta, a conformal mapping to thermal entropy in a hyperbolic geometry; then identification of the hyperbolic geometry with the conformal boundary of a bulk hyperbolic space and use of an AdS/CFT holographic formula to compute the resultant functional determinant. We explicitly verify the connection with the type-A trace anomaly for the entanglement entropy, whereas the Renyi entropy is computed with the aid of the Sommerfeld formula in order to deal with a conical defect. We show that as a by-product, the log coefficient of the Renyi entropy for round spheres can be efficiently obtained as the q-analog of a procedure similar to the one found by Cappelli and D'Appollonio that rendered the type-A trace anomaly.

Idioma originalInglés
Número de artículo105401
PublicaciónJournal of Physics A: Mathematical and Theoretical
EstadoPublicada - 13 mar. 2015

Áreas temáticas de ASJC Scopus

  • Física estadística y no lineal
  • Estadística y probabilidad
  • Modelización y simulación
  • Física matemática
  • Física y astronomía (todo)


Profundice en los temas de investigación de 'On Renyi entropy for free conformal fields: Holographic and q-analog recipes'. En conjunto forman una huella única.

Citar esto