### Resumen

Criticality represents a specific point in the parameter space of a higher-derivative gravity theory, where the linearized field equations become degenerate. In 4D Critical Gravity, the Lagrangian contains a Weyl-squared term, which does not modify the asymptotic form of the curvature. The Weyl^{2} coupling is chosen such that it eliminates the massive scalar mode and it renders the massive spin-2 mode massless. In doing so, the theory turns consistent around the critical point. Here, we employ the Noether–Wald method to derive the conserved quantities for the action of Critical Gravity. It is manifest from this energy definition that, at the critical point, the mass is identically zero for Einstein spacetimes, what is a defining property of the theory. As the entropy is obtained from the Noether–Wald charges at the horizon, it is evident that it also vanishes for any Einstein black hole.

Idioma original | Inglés |
---|---|

Páginas (desde-hasta) | 302-307 |

Número de páginas | 6 |

Publicación | Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics |

Volumen | 788 |

DOI | |

Estado | Publicada - 10 ene 2019 |

### Áreas temáticas de ASJC Scopus

- Física nuclear y de alta energía

## Huella Profundice en los temas de investigación de 'Noether–Wald energy in Critical Gravity'. En conjunto forman una huella única.

## Citar esto

*Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics*,

*788*, 302-307. https://doi.org/10.1016/j.physletb.2018.11.021