Neural Predictor-Based Dynamic Surface Predictive Control for Power Converters

Xing Liu, Lin Qiu, Jose Rodriguez, Wenjie Wu, Jien Ma, Zhouhua Peng, Dan Wang, Youtong Fang

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

19 Citas (Scopus)

Resumen

In this letter, a neural predictor-based dynamic surface predictive control framework, endowed with the merits of adaptive dynamic surface control and finite control-set model predictive control, is proposed where the estimation of neural predictor is incorporated to identify the system dynamics and lumped unknown uncertainties. The key features of the proposal are that, first, the issue of ``explosion of complexity" inherent in the classical back-stepping control is avoided, second, the model uncertainties and disturbances are explicitly dealt with, and, third, the tedious determination procedure of weighting factors is removed. These features lead to a much simpler adaptive predictive control solution, which is convenient to implement in applications. Furthermore, a Lyapunov function is constructed, and the stability analysis is given. It demonstrates that all signals in the closed-loop system are uniformly ultimately bounded. Finally, this proposal is experimentally assessed, where the performance evaluation of steady-state and transient-state confirms the availability of the proposed solution for modular multilevel converter.

Idioma originalInglés
Páginas (desde-hasta)1057-1065
Número de páginas9
PublicaciónIEEE Transactions on Industrial Electronics
Volumen70
N.º1
DOI
EstadoEn prensa - 2022

Áreas temáticas de ASJC Scopus

  • Ingeniería de control y sistemas
  • Ingeniería eléctrica y electrónica

Huella

Profundice en los temas de investigación de 'Neural Predictor-Based Dynamic Surface Predictive Control for Power Converters'. En conjunto forman una huella única.

Citar esto