Modelling parameter configuration spaces with local optima networks

German Treimun-Costa, Elizabeth Montero, Gabriela Ochoa, Nicolás Rojas-Morales

Resultado de la investigación: Contribución a los tipos de informe/libroContribución a la conferenciarevisión exhaustiva

Resumen

Most algorithms proposed for solving complex problems require the definition of some parameter values. The process of finding suitable parameter values is an optimization problem by itself. Understanding the global structure of search spaces of complex optimization problems remains a challenge. Moreover, understanding the relationship between parameter values and the performance of metaheuristics is a key issue on their development. Local optima networks propose a scheme to model search spaces as networks whose nodes represent local optima and edges represent transitions between them. In this work, we adapt the local optima network model to analyze and visualize the global structure of parameter configuration spaces. Our main objectives are to understand the structure of these networks and explore the difficulty of different tuning scenarios using common indicators previously proposed in local optima networks studies (e.g. number of local optima, number of global optima and presence of local and global funnels). For this, we use the well-known tuning method ParamILS to analyze configuration search spaces of a standard genetic algorithm that solves continuous optimization problems.

Idioma originalInglés
Título de la publicación alojadaGECCO 2020 - Proceedings of the 2020 Genetic and Evolutionary Computation Conference
EditorialAssociation for Computing Machinery
Páginas751-759
Número de páginas9
ISBN (versión digital)9781450371285
DOI
EstadoPublicada - 25 jun 2020
Evento2020 Genetic and Evolutionary Computation Conference, GECCO 2020 - Cancun, México
Duración: 8 jul 202012 jul 2020

Serie de la publicación

NombreGECCO 2020 - Proceedings of the 2020 Genetic and Evolutionary Computation Conference

Conferencia

Conferencia2020 Genetic and Evolutionary Computation Conference, GECCO 2020
País/TerritorioMéxico
CiudadCancun
Período8/07/2012/07/20

Áreas temáticas de ASJC Scopus

  • Inteligencia artificial
  • Software
  • Ciencia computacional teórica

Huella

Profundice en los temas de investigación de 'Modelling parameter configuration spaces with local optima networks'. En conjunto forman una huella única.

Citar esto