Model-free neural network-based predictive control for robust operation of power converters

Sanaz Sabzevari, Rasool Heydari, Maryam Mohiti, Mehdi Savaghebi, Jose Rodriguez

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva


An accurate definition of a system model significantly affects the performance of modelbased control strategies, for example, model predictive control (MPC). In this paper, a model-free predictive control strategy is presented to mitigate all ramifications of the model’s uncertainties and parameter mismatch between the plant and controller for the control of power electronic converters in applications such as microgrids. A specific recurrent neural network structure called state-space neural network (ssNN) is proposed as a model-free current predictive control for a three-phase power converter. In this approach, NN weights are updated through particle swarm optimization (PSO) for faster convergence. After the training process, the proposed ssNN-PSO combined with the predictive controller using a performance criterion overcomes parameter variations in the physical system. A comparison has been carried out between the conventional MPC and the proposed model-free predictive control in different scenarios. The simulation results of the proposed control scheme exhibit more robustness compared to the conventional finite-control-set MPC.

Idioma originalInglés
Número de artículo2325
EstadoPublicada - 2 abr 2021

Áreas temáticas de ASJC Scopus

  • Energías renovables, sostenibilidad y medio ambiente
  • Tecnología del combustible
  • Ingeniería energética y tecnologías de la energía
  • Energía (miscelánea)
  • Control y optimización
  • Ingeniería eléctrica y electrónica
  • Ingeniería (miscelánea)


Profundice en los temas de investigación de 'Model-free neural network-based predictive control for robust operation of power converters'. En conjunto forman una huella única.

Citar esto