MARKED GRAPHS AND THE CHROMATIC SYMMETRIC FUNCTION

Jose Aliste-Prieto, Anna De Mier, Rosa Orellana, Jose Zamora

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)

Resumen

The main result of this paper is the introduction of marked graphs and the marked graph polynomials (M-polynomial) associated with them. These polynomials can be defined via a deletion-contraction operation. These polynomials are a generalization of the W-polynomial, introduced by Noble and Welsh, and a specialization of the V-polynomial, introduced by Ellis-Monaghan and Moffatt. In addition, we describe an important specialization of the M-polynomial, which we call the D-polynomial. Furthermore, we present an efficient algorithm for computing the chromatic symmetric function of a graph in the star basis of symmetric functions. As an application of these tools, we prove that proper trees of diameter at most 5 are reconstructible from its chromatic symmetric function.

Idioma originalInglés
Páginas (desde-hasta)1881-1919
Número de páginas39
PublicaciónSIAM Journal on Discrete Mathematics
Volumen37
N.º3
DOI
EstadoPublicada - 2023

Áreas temáticas de ASJC Scopus

  • Matemáticas General

Huella

Profundice en los temas de investigación de 'MARKED GRAPHS AND THE CHROMATIC SYMMETRIC FUNCTION'. En conjunto forman una huella única.

Citar esto