MacroH2A subtypes contribute antagonistically to the transcriptional regulation of the ribosomal cistron during seasonal acclimatization of the carp fish

I. Araya, G. Nardocci, J. P. Morales, M. I. Vera, A. Molina, M. Alvarez

Resultado de la investigación: Article

18 Citas (Scopus)

Resumen

Background. Incorporation of histone variants into chromatin is one of the epigenetic mechanisms used for regulation of gene expression. Macro (m)H2A is a histone variant that has two different subtypes in vertebrates: mH2A1 and mH2A2. It is known that mH2A is associated with gene silencing, but recent studies indicate that these mH2A subtypes could contribute more widely to transcriptional regulation. We have previously demonstrated that the gene-reprogramming response mediates adaptation of the carp fish to its environment, and that ribosomal gene transcription is seasonally regulated in carp. However, there have been few studies investigating how epigenetic mechanisms contribute to environmental adaptation and, in particular, to ribosomal cistron regulation. Results. In this paper, we report the occurrence of differential incorporation of mH2A subtypes into chromatin during seasonal adaptation in the carp, an event that concurs with opposing transcriptional states. Moreover, we observed that enrichment of mH2A1 in the ribosomal cistron during winter, and conversely, enrichment of mH2A2 during summer. mH2A1 consistently colocalizes with a heterochromatin marker (H3K27me2; histone H3 trimethylated at lysine 27) and mH2A2 with a euchromatin marker (H3K4me3; histone H3 trimethylated at lysine 4). Similar results were found for the L41gene, with enrichment of mH2A in the promoter region. Conclusions. We have characterized both mH2A subtypes from carp fish, and evaluated their participation in the regulation of the ribosomal cistron. Our findings indicate that differential incorporation of mH2A subtypes into the ribosome could regulate gene expression during the acclimatization process in carp. Our results reveal differential chromatin incorporation of the mH2A subtypes during the environmental adaptation process, correlating wtih antagonistic transcriptional states in the carp ribosomal cistron.

Idioma originalEnglish
Número de artículo14
PublicaciónEpigenetics and Chromatin
Volumen3
N.º1
DOI
EstadoPublished - 18 ago 2010

Huella dactilar

Carps
Acclimatization
Fishes
Histones
Genes
Chromatin
Epigenomics
Lysine
Euchromatin
Heterochromatin
Gene Expression Regulation
Gene Silencing
Ribosomes
Genetic Promoter Regions
Vertebrates
Gene Expression

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics

Citar esto

@article{cadb61fd74284c159dc07a26352c6428,
title = "MacroH2A subtypes contribute antagonistically to the transcriptional regulation of the ribosomal cistron during seasonal acclimatization of the carp fish",
abstract = "Background. Incorporation of histone variants into chromatin is one of the epigenetic mechanisms used for regulation of gene expression. Macro (m)H2A is a histone variant that has two different subtypes in vertebrates: mH2A1 and mH2A2. It is known that mH2A is associated with gene silencing, but recent studies indicate that these mH2A subtypes could contribute more widely to transcriptional regulation. We have previously demonstrated that the gene-reprogramming response mediates adaptation of the carp fish to its environment, and that ribosomal gene transcription is seasonally regulated in carp. However, there have been few studies investigating how epigenetic mechanisms contribute to environmental adaptation and, in particular, to ribosomal cistron regulation. Results. In this paper, we report the occurrence of differential incorporation of mH2A subtypes into chromatin during seasonal adaptation in the carp, an event that concurs with opposing transcriptional states. Moreover, we observed that enrichment of mH2A1 in the ribosomal cistron during winter, and conversely, enrichment of mH2A2 during summer. mH2A1 consistently colocalizes with a heterochromatin marker (H3K27me2; histone H3 trimethylated at lysine 27) and mH2A2 with a euchromatin marker (H3K4me3; histone H3 trimethylated at lysine 4). Similar results were found for the L41gene, with enrichment of mH2A in the promoter region. Conclusions. We have characterized both mH2A subtypes from carp fish, and evaluated their participation in the regulation of the ribosomal cistron. Our findings indicate that differential incorporation of mH2A subtypes into the ribosome could regulate gene expression during the acclimatization process in carp. Our results reveal differential chromatin incorporation of the mH2A subtypes during the environmental adaptation process, correlating wtih antagonistic transcriptional states in the carp ribosomal cistron.",
author = "I. Araya and G. Nardocci and Morales, {J. P.} and Vera, {M. I.} and A. Molina and M. Alvarez",
year = "2010",
month = "8",
day = "18",
doi = "10.1186/1756-8935-3-14",
language = "English",
volume = "3",
journal = "Epigenetics and Chromatin",
issn = "1756-8935",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - MacroH2A subtypes contribute antagonistically to the transcriptional regulation of the ribosomal cistron during seasonal acclimatization of the carp fish

AU - Araya, I.

AU - Nardocci, G.

AU - Morales, J. P.

AU - Vera, M. I.

AU - Molina, A.

AU - Alvarez, M.

PY - 2010/8/18

Y1 - 2010/8/18

N2 - Background. Incorporation of histone variants into chromatin is one of the epigenetic mechanisms used for regulation of gene expression. Macro (m)H2A is a histone variant that has two different subtypes in vertebrates: mH2A1 and mH2A2. It is known that mH2A is associated with gene silencing, but recent studies indicate that these mH2A subtypes could contribute more widely to transcriptional regulation. We have previously demonstrated that the gene-reprogramming response mediates adaptation of the carp fish to its environment, and that ribosomal gene transcription is seasonally regulated in carp. However, there have been few studies investigating how epigenetic mechanisms contribute to environmental adaptation and, in particular, to ribosomal cistron regulation. Results. In this paper, we report the occurrence of differential incorporation of mH2A subtypes into chromatin during seasonal adaptation in the carp, an event that concurs with opposing transcriptional states. Moreover, we observed that enrichment of mH2A1 in the ribosomal cistron during winter, and conversely, enrichment of mH2A2 during summer. mH2A1 consistently colocalizes with a heterochromatin marker (H3K27me2; histone H3 trimethylated at lysine 27) and mH2A2 with a euchromatin marker (H3K4me3; histone H3 trimethylated at lysine 4). Similar results were found for the L41gene, with enrichment of mH2A in the promoter region. Conclusions. We have characterized both mH2A subtypes from carp fish, and evaluated their participation in the regulation of the ribosomal cistron. Our findings indicate that differential incorporation of mH2A subtypes into the ribosome could regulate gene expression during the acclimatization process in carp. Our results reveal differential chromatin incorporation of the mH2A subtypes during the environmental adaptation process, correlating wtih antagonistic transcriptional states in the carp ribosomal cistron.

AB - Background. Incorporation of histone variants into chromatin is one of the epigenetic mechanisms used for regulation of gene expression. Macro (m)H2A is a histone variant that has two different subtypes in vertebrates: mH2A1 and mH2A2. It is known that mH2A is associated with gene silencing, but recent studies indicate that these mH2A subtypes could contribute more widely to transcriptional regulation. We have previously demonstrated that the gene-reprogramming response mediates adaptation of the carp fish to its environment, and that ribosomal gene transcription is seasonally regulated in carp. However, there have been few studies investigating how epigenetic mechanisms contribute to environmental adaptation and, in particular, to ribosomal cistron regulation. Results. In this paper, we report the occurrence of differential incorporation of mH2A subtypes into chromatin during seasonal adaptation in the carp, an event that concurs with opposing transcriptional states. Moreover, we observed that enrichment of mH2A1 in the ribosomal cistron during winter, and conversely, enrichment of mH2A2 during summer. mH2A1 consistently colocalizes with a heterochromatin marker (H3K27me2; histone H3 trimethylated at lysine 27) and mH2A2 with a euchromatin marker (H3K4me3; histone H3 trimethylated at lysine 4). Similar results were found for the L41gene, with enrichment of mH2A in the promoter region. Conclusions. We have characterized both mH2A subtypes from carp fish, and evaluated their participation in the regulation of the ribosomal cistron. Our findings indicate that differential incorporation of mH2A subtypes into the ribosome could regulate gene expression during the acclimatization process in carp. Our results reveal differential chromatin incorporation of the mH2A subtypes during the environmental adaptation process, correlating wtih antagonistic transcriptional states in the carp ribosomal cistron.

UR - http://www.scopus.com/inward/record.url?scp=77955533094&partnerID=8YFLogxK

U2 - 10.1186/1756-8935-3-14

DO - 10.1186/1756-8935-3-14

M3 - Article

C2 - 20670405

AN - SCOPUS:77955533094

VL - 3

JO - Epigenetics and Chromatin

JF - Epigenetics and Chromatin

SN - 1756-8935

IS - 1

M1 - 14

ER -