Machine learning predictive classification models for the carcinogenic activity of activated metabolites derived from aromatic amines and nitroaromatics

Andrés Halabi, Elizabeth Rincón, Eduardo Chamorro

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

9 Citas (Scopus)

Resumen

A 3D-QSAR study based on DFT descriptors and machine learning calculations is presented in this work. Our goal has been to build predictive models for classifying the carcinogenic activity of a set of aromatic amines (AA) and nitroaromatic (NA) compounds. As the main result, we stress that calculations must consider both the activated metabolites (derived from AA and NA species) and the water solvent to obtain reliable predictive classification models. We have obtained eight decision tree models that presented an accuracy of over 90% by using either Gázquez-Vela chemical potential (μ+) or the chemical hardness (η) of the activated metabolites in aqueous solvent.

Idioma originalInglés
Número de artículo105347
PublicaciónToxicology in Vitro
Volumen81
DOI
EstadoPublicada - jun. 2022

Áreas temáticas de ASJC Scopus

  • Toxicología

Huella

Profundice en los temas de investigación de 'Machine learning predictive classification models for the carcinogenic activity of activated metabolites derived from aromatic amines and nitroaromatics'. En conjunto forman una huella única.

Citar esto