Linearly repetitive delone sets

José Aliste Prieto, Daniel Coronel, María Isabel Cortez, Fabien Durand, Samuel Petite

Resultado de la investigación: Chapter

3 Citas (Scopus)

Resumen

Linearly repetitive Delone sets are the simplest aperiodic repetitive Delone sets of the Euclidean space, e.g. any self similar Delone set is linearly repetitive. We present here some combinatorial, ergodic and mixing properties of their associated dynamical systems. We also give a characterization of such sets via the patch frequencies. Finally, we explain why a linearly repetitive Delone set is the image of a lattice by a bi-Lipschitz map.

Idioma originalEnglish
Título de la publicación alojadaProgress in Mathematics
EditorialSpringer Basel
Páginas195-222
Número de páginas28
Volumen309
DOI
EstadoPublished - 2015

Serie de la publicación

NombreProgress in Mathematics
Volumen309
ISSN (versión impresa)0743-1643
ISSN (versión digital)2296-505X

Huella dactilar

Linearly
Lipschitz Map
Self-similar Set
Patch
Euclidean space
Dynamical system

ASJC Scopus subject areas

  • Algebra and Number Theory
  • Analysis
  • Geometry and Topology

Citar esto

Prieto, J. A., Coronel, D., Cortez, M. I., Durand, F., & Petite, S. (2015). Linearly repetitive delone sets. En Progress in Mathematics (Vol. 309, pp. 195-222). (Progress in Mathematics; Vol. 309). Springer Basel. https://doi.org/10.1007/978-3-0348-0903-0_6
Prieto, José Aliste ; Coronel, Daniel ; Cortez, María Isabel ; Durand, Fabien ; Petite, Samuel. / Linearly repetitive delone sets. Progress in Mathematics. Vol. 309 Springer Basel, 2015. pp. 195-222 (Progress in Mathematics).
@inbook{d586c270ceb64d32a676e33ff8a41857,
title = "Linearly repetitive delone sets",
abstract = "Linearly repetitive Delone sets are the simplest aperiodic repetitive Delone sets of the Euclidean space, e.g. any self similar Delone set is linearly repetitive. We present here some combinatorial, ergodic and mixing properties of their associated dynamical systems. We also give a characterization of such sets via the patch frequencies. Finally, we explain why a linearly repetitive Delone set is the image of a lattice by a bi-Lipschitz map.",
keywords = "Delone sets, Linearly repetitive, Tiling systems, Vorono{\"i} cell",
author = "Prieto, {Jos{\'e} Aliste} and Daniel Coronel and Cortez, {Mar{\'i}a Isabel} and Fabien Durand and Samuel Petite",
year = "2015",
doi = "10.1007/978-3-0348-0903-0_6",
language = "English",
volume = "309",
series = "Progress in Mathematics",
publisher = "Springer Basel",
pages = "195--222",
booktitle = "Progress in Mathematics",

}

Prieto, JA, Coronel, D, Cortez, MI, Durand, F & Petite, S 2015, Linearly repetitive delone sets. En Progress in Mathematics. vol. 309, Progress in Mathematics, vol. 309, Springer Basel, pp. 195-222. https://doi.org/10.1007/978-3-0348-0903-0_6

Linearly repetitive delone sets. / Prieto, José Aliste; Coronel, Daniel; Cortez, María Isabel; Durand, Fabien; Petite, Samuel.

Progress in Mathematics. Vol. 309 Springer Basel, 2015. p. 195-222 (Progress in Mathematics; Vol. 309).

Resultado de la investigación: Chapter

TY - CHAP

T1 - Linearly repetitive delone sets

AU - Prieto, José Aliste

AU - Coronel, Daniel

AU - Cortez, María Isabel

AU - Durand, Fabien

AU - Petite, Samuel

PY - 2015

Y1 - 2015

N2 - Linearly repetitive Delone sets are the simplest aperiodic repetitive Delone sets of the Euclidean space, e.g. any self similar Delone set is linearly repetitive. We present here some combinatorial, ergodic and mixing properties of their associated dynamical systems. We also give a characterization of such sets via the patch frequencies. Finally, we explain why a linearly repetitive Delone set is the image of a lattice by a bi-Lipschitz map.

AB - Linearly repetitive Delone sets are the simplest aperiodic repetitive Delone sets of the Euclidean space, e.g. any self similar Delone set is linearly repetitive. We present here some combinatorial, ergodic and mixing properties of their associated dynamical systems. We also give a characterization of such sets via the patch frequencies. Finally, we explain why a linearly repetitive Delone set is the image of a lattice by a bi-Lipschitz map.

KW - Delone sets

KW - Linearly repetitive

KW - Tiling systems

KW - Voronoï cell

UR - http://www.scopus.com/inward/record.url?scp=84992379458&partnerID=8YFLogxK

U2 - 10.1007/978-3-0348-0903-0_6

DO - 10.1007/978-3-0348-0903-0_6

M3 - Chapter

VL - 309

T3 - Progress in Mathematics

SP - 195

EP - 222

BT - Progress in Mathematics

PB - Springer Basel

ER -

Prieto JA, Coronel D, Cortez MI, Durand F, Petite S. Linearly repetitive delone sets. En Progress in Mathematics. Vol. 309. Springer Basel. 2015. p. 195-222. (Progress in Mathematics). https://doi.org/10.1007/978-3-0348-0903-0_6