Life cycle assessment of second generation ethanol derived from banana agricultural waste: Environmental impacts and energy balance

Ana Belén Guerrero, Edmundo Muñoz

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

42 Citas (Scopus)

Resumen

Biofuels are considered as an alternative to partially replace fossil fuels and mitigate climate change effects. A life cycle assessment of second generation ethanol, derived from banana agricultural wastes, was developed to assess its environmental sustainability and demonstrate its capacity of reducing greenhouse gas emissions. The methodological approach was conducted in a Well-to-Wheel perspective, using as functional unit 1 MJ of energy released in the combustion of bioethanol in a passenger car from different bioethanol blends. Primary and secondary information sources were used for the assessment; mass balance and ethanol yield data came from laboratory experimentation. The environmental assessment was carried out using SimaPro 8.0.4.30 with the ReCiPe midpoint (H) impact assessment methodology. The quantified impact categories were climate change (CC), terrestrial acidification (TA), freshwater eutrophication (FE), photochemical oxidant formation (PO), particulate matter formation (PM), and fossil depletion (FD). In addition, net energy value and energy ratio (ER) were analyzed to ensure a positive energy balance. Compared to using pure gasoline, blended gasoline reduced CC, PO, PM, and FD impacts, but increased FE and TA impacts. The obtained energy balance was positive, with an ER of 2.68 MJ/MJ. Wastewater treatment is the process that presented the greatest energy consumption. Since Ecuador is the world's largest exporter of bananas, and a great amount of agricultural waste is available, a case study in this country was analyzed. This case study indicated that Ecuador could use banana residue for ethanol production, considering its positive and negative impacts. In conclusion, second generation ethanol derived from banana agricultural waste has potential to reduce greenhouse gas emissions and fossil depletion and has a positive energy balance.

Idioma originalInglés
Páginas (desde-hasta)710-717
Número de páginas8
PublicaciónJournal of Cleaner Production
Volumen174
DOI
EstadoPublicada - 20 ene 2018

Áreas temáticas de ASJC Scopus

  • Energías renovables, sostenibilidad y medio ambiente
  • Ciencias ambientales (todo)
  • Estrategia y gestión
  • Ingeniería industrial y de fabricación

Huella

Profundice en los temas de investigación de 'Life cycle assessment of second generation ethanol derived from banana agricultural waste: Environmental impacts and energy balance'. En conjunto forman una huella única.

Citar esto