Learning from the opposite: Strategies for Ants that solve multidimensional Knapsack problem

Nicolás Rojas-Morales, R. María Cristina Riff, U. Elizabeth Montero

Producción científica: Contribución a los tipos de informe/libroContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

This work presents different opposite learning strategies for Ant Knapsack, an ant based algorithm for the Multidimensional Knapsack Problem. We propose to include a previous opposite learning phase to Ant Knapsack, for discarding regions of the search space. This opposite knowledge is then used by Ant Knapsack for solving the original problem. The objective is to improve the search process of Ant Knapsack maintaining its original design. We present three strategies which differ on how the solutions can be constructed on a opposite way. The results obtained are promising and encourage to use this approach for solving other problems.

Idioma originalInglés
Título de la publicación alojada2016 IEEE Congress on Evolutionary Computation, CEC 2016
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas193-200
Número de páginas8
ISBN (versión digital)9781509006229
DOI
EstadoPublicada - 14 nov. 2016
Evento2016 IEEE Congress on Evolutionary Computation, CEC 2016 - Vancouver, Canadá
Duración: 24 jul. 201629 jul. 2016

Conferencia

Conferencia2016 IEEE Congress on Evolutionary Computation, CEC 2016
País/TerritorioCanadá
CiudadVancouver
Período24/07/1629/07/16

Áreas temáticas de ASJC Scopus

  • Inteligencia artificial
  • Modelización y simulación
  • Informática aplicada
  • Control y optimización

Huella

Profundice en los temas de investigación de 'Learning from the opposite: Strategies for Ants that solve multidimensional Knapsack problem'. En conjunto forman una huella única.

Citar esto