Resumen
This work presents different opposite learning strategies for Ant Knapsack, an ant based algorithm for the Multidimensional Knapsack Problem. We propose to include a previous opposite learning phase to Ant Knapsack, for discarding regions of the search space. This opposite knowledge is then used by Ant Knapsack for solving the original problem. The objective is to improve the search process of Ant Knapsack maintaining its original design. We present three strategies which differ on how the solutions can be constructed on a opposite way. The results obtained are promising and encourage to use this approach for solving other problems.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | 2016 IEEE Congress on Evolutionary Computation, CEC 2016 |
Editorial | Institute of Electrical and Electronics Engineers Inc. |
Páginas | 193-200 |
Número de páginas | 8 |
ISBN (versión digital) | 9781509006229 |
DOI | |
Estado | Publicada - 14 nov. 2016 |
Evento | 2016 IEEE Congress on Evolutionary Computation, CEC 2016 - Vancouver, Canadá Duración: 24 jul. 2016 → 29 jul. 2016 |
Conferencia
Conferencia | 2016 IEEE Congress on Evolutionary Computation, CEC 2016 |
---|---|
País/Territorio | Canadá |
Ciudad | Vancouver |
Período | 24/07/16 → 29/07/16 |
Áreas temáticas de ASJC Scopus
- Inteligencia artificial
- Modelización y simulación
- Informática aplicada
- Control y optimización