TY - JOUR
T1 - L-moments of the Birnbaum–Saunders distribution and its extreme value version
T2 - estimation, goodness of fit and application to earthquake data
AU - Lillo, Camilo
AU - Leiva, Víctor
AU - Nicolis, Orietta
AU - Aykroyd, Robert G.
N1 - Publisher Copyright:
© 2016 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2018/1/25
Y1 - 2018/1/25
N2 - Understanding patterns in the frequency of extreme natural events, such as earthquakes, is important as it helps in the prediction of their future occurrence and hence provides better civil protection. Distributions describing these events are known to be heavy tailed and positive skew making standard distributions unsuitable for modelling the frequency of such events. The Birnbaum–Saunders distribution and its extreme value version have been widely studied and applied due to their attractive properties. We derive L-moment equations for these distributions and propose novel methods for parameter estimation, goodness-of-fit assessment and model selection. A simulation study is conducted to evaluate the performance of the L-moment estimators, which is compared to that of the maximum likelihood estimators, demonstrating the superiority of the proposed methods. To illustrate these methods in a practical application, a data analysis of real-world earthquake magnitudes, obtained from the global centroid moment tensor catalogue during 1962–2015, is carried out. This application identifies the extreme value Birnbaum–Saunders distribution as a better model than classic extreme value distributions for describing seismic events.
AB - Understanding patterns in the frequency of extreme natural events, such as earthquakes, is important as it helps in the prediction of their future occurrence and hence provides better civil protection. Distributions describing these events are known to be heavy tailed and positive skew making standard distributions unsuitable for modelling the frequency of such events. The Birnbaum–Saunders distribution and its extreme value version have been widely studied and applied due to their attractive properties. We derive L-moment equations for these distributions and propose novel methods for parameter estimation, goodness-of-fit assessment and model selection. A simulation study is conducted to evaluate the performance of the L-moment estimators, which is compared to that of the maximum likelihood estimators, demonstrating the superiority of the proposed methods. To illustrate these methods in a practical application, a data analysis of real-world earthquake magnitudes, obtained from the global centroid moment tensor catalogue during 1962–2015, is carried out. This application identifies the extreme value Birnbaum–Saunders distribution as a better model than classic extreme value distributions for describing seismic events.
KW - GCMT catalogue
KW - Generalized extreme value distributions
KW - goodness-of-fit methods
KW - maximum likelihood and moment estimation
KW - Monte Carlo simulation
KW - R software
UR - http://www.scopus.com/inward/record.url?scp=85007424247&partnerID=8YFLogxK
U2 - 10.1080/02664763.2016.1269729
DO - 10.1080/02664763.2016.1269729
M3 - Article
AN - SCOPUS:85007424247
SN - 0266-4763
VL - 45
SP - 187
EP - 209
JO - Journal of Applied Statistics
JF - Journal of Applied Statistics
IS - 2
ER -