Resumen
Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like the Keratitis-Ichthyosis-Deafness syndrome (KID). Because in the human skin connexin 26 (Cx26) is co-expressed with other connexins, like Cx43 and Cx30, and as the KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild-type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channel (GJC) functions remain unknown. In this study, we demonstrate that syndromic mutations, at the N terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) shows exacerbated hemichannel activity but nonfunctional GJCs; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca 2+ overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin.
Idioma original | English |
---|---|
Páginas (desde-hasta) | 1338-1347 |
Número de páginas | 10 |
Publicación | Journal of Investigative Dermatology |
Volumen | 135 |
N.º | 5 |
DOI | |
Estado | Published - 22 may 2015 |
Huella dactilar
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Dermatology
- Cell Biology
Citar esto
}
Keratitis-ichthyosis-deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43. / García, Isaac E.; Maripillán, Jaime; Jara, Oscar; Ceriani, Ricardo; Palacios-Muñoz, Angelina; Ramachandran, Jayalakshmi; Olivero, Pablo; Perez-Acle, Tomas; González, Carlos; Sáez, Juan C.; Contreras, Jorge E.; Martínez, Agustín D.
En: Journal of Investigative Dermatology, Vol. 135, N.º 5, 22.05.2015, p. 1338-1347.Resultado de la investigación: Article
TY - JOUR
T1 - Keratitis-ichthyosis-deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43
AU - García, Isaac E.
AU - Maripillán, Jaime
AU - Jara, Oscar
AU - Ceriani, Ricardo
AU - Palacios-Muñoz, Angelina
AU - Ramachandran, Jayalakshmi
AU - Olivero, Pablo
AU - Perez-Acle, Tomas
AU - González, Carlos
AU - Sáez, Juan C.
AU - Contreras, Jorge E.
AU - Martínez, Agustín D.
PY - 2015/5/22
Y1 - 2015/5/22
N2 - Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like the Keratitis-Ichthyosis-Deafness syndrome (KID). Because in the human skin connexin 26 (Cx26) is co-expressed with other connexins, like Cx43 and Cx30, and as the KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild-type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channel (GJC) functions remain unknown. In this study, we demonstrate that syndromic mutations, at the N terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) shows exacerbated hemichannel activity but nonfunctional GJCs; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca 2+ overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin.
AB - Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like the Keratitis-Ichthyosis-Deafness syndrome (KID). Because in the human skin connexin 26 (Cx26) is co-expressed with other connexins, like Cx43 and Cx30, and as the KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild-type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channel (GJC) functions remain unknown. In this study, we demonstrate that syndromic mutations, at the N terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) shows exacerbated hemichannel activity but nonfunctional GJCs; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca 2+ overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin.
UR - http://www.scopus.com/inward/record.url?scp=84928417149&partnerID=8YFLogxK
U2 - 10.1038/jid.2015.20
DO - 10.1038/jid.2015.20
M3 - Article
C2 - 25625422
AN - SCOPUS:84928417149
VL - 135
SP - 1338
EP - 1347
JO - Journal of Investigative Dermatology
JF - Journal of Investigative Dermatology
SN - 0022-202X
IS - 5
ER -