KDEL receptor regulates secretion by lysosome relocation- and autophagy-dependent modulation of lipid-droplet turnover

Diego Tapia, Tomás Jiménez, Constanza Zamora, Javier Espinoza, Riccardo Rizzo, Alexis González-Cárdenas, Danitza Fuentes, Sergio Hernández, Viviana A. Cavieres, Andrea Soza, Fanny Guzmán, Gloria Arriagada, María Isabel Yuseff, Gonzalo A. Mardones, Patricia V. Burgos, Alberto Luini, Alfonso González, Jorge Cancino

Resultado de la investigación: Article

Resumen

Inter-organelle signalling has essential roles in cell physiology encompassing cell metabolism, aging and temporal adaptation to external and internal perturbations. How such signalling coordinates different organelle functions within adaptive responses remains unknown. Membrane traffic is a fundamental process in which membrane fluxes need to be sensed for the adjustment of cellular requirements and homeostasis. Studying endoplasmic reticulum-to-Golgi trafficking, we found that Golgi-based, KDEL receptor-dependent signalling promotes lysosome repositioning to the perinuclear area, involving a complex process intertwined to autophagy, lipid-droplet turnover and Golgi-mediated secretion that engages the microtubule motor protein dynein-LRB1 and the autophagy cargo receptor p62/SQSTM1. This process, here named ‘traffic-induced degradation response for secretion’ (TIDeRS) discloses a cellular mechanism by which nutrient and membrane sensing machineries cooperate to sustain Golgi-dependent protein secretion.

Idioma originalEnglish
Número de artículo735
PublicaciónNature Communications
Volumen10
N.º1
DOI
EstadoPublished - 13 feb 2019

Huella dactilar

lysosomes
relocation
secretions
Relocation
Autophagy
Lysosomes
lipids
organelles
Modulation
membranes
Membranes
Lipids
modulation
Organelles
traffic
cytology
Microtubule Proteins
proteins
endoplasmic reticulum
homeostasis

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Citar esto

Tapia, D., Jiménez, T., Zamora, C., Espinoza, J., Rizzo, R., González-Cárdenas, A., ... Cancino, J. (2019). KDEL receptor regulates secretion by lysosome relocation- and autophagy-dependent modulation of lipid-droplet turnover. Nature Communications, 10(1), [735]. https://doi.org/10.1038/s41467-019-08501-w
Tapia, Diego ; Jiménez, Tomás ; Zamora, Constanza ; Espinoza, Javier ; Rizzo, Riccardo ; González-Cárdenas, Alexis ; Fuentes, Danitza ; Hernández, Sergio ; Cavieres, Viviana A. ; Soza, Andrea ; Guzmán, Fanny ; Arriagada, Gloria ; Yuseff, María Isabel ; Mardones, Gonzalo A. ; Burgos, Patricia V. ; Luini, Alberto ; González, Alfonso ; Cancino, Jorge. / KDEL receptor regulates secretion by lysosome relocation- and autophagy-dependent modulation of lipid-droplet turnover. En: Nature Communications. 2019 ; Vol. 10, N.º 1.
@article{eda7e99b58374b58bc0fe470ce98212e,
title = "KDEL receptor regulates secretion by lysosome relocation- and autophagy-dependent modulation of lipid-droplet turnover",
abstract = "Inter-organelle signalling has essential roles in cell physiology encompassing cell metabolism, aging and temporal adaptation to external and internal perturbations. How such signalling coordinates different organelle functions within adaptive responses remains unknown. Membrane traffic is a fundamental process in which membrane fluxes need to be sensed for the adjustment of cellular requirements and homeostasis. Studying endoplasmic reticulum-to-Golgi trafficking, we found that Golgi-based, KDEL receptor-dependent signalling promotes lysosome repositioning to the perinuclear area, involving a complex process intertwined to autophagy, lipid-droplet turnover and Golgi-mediated secretion that engages the microtubule motor protein dynein-LRB1 and the autophagy cargo receptor p62/SQSTM1. This process, here named ‘traffic-induced degradation response for secretion’ (TIDeRS) discloses a cellular mechanism by which nutrient and membrane sensing machineries cooperate to sustain Golgi-dependent protein secretion.",
author = "Diego Tapia and Tom{\'a}s Jim{\'e}nez and Constanza Zamora and Javier Espinoza and Riccardo Rizzo and Alexis Gonz{\'a}lez-C{\'a}rdenas and Danitza Fuentes and Sergio Hern{\'a}ndez and Cavieres, {Viviana A.} and Andrea Soza and Fanny Guzm{\'a}n and Gloria Arriagada and Yuseff, {Mar{\'i}a Isabel} and Mardones, {Gonzalo A.} and Burgos, {Patricia V.} and Alberto Luini and Alfonso Gonz{\'a}lez and Jorge Cancino",
year = "2019",
month = "2",
day = "13",
doi = "10.1038/s41467-019-08501-w",
language = "English",
volume = "10",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",
number = "1",

}

Tapia, D, Jiménez, T, Zamora, C, Espinoza, J, Rizzo, R, González-Cárdenas, A, Fuentes, D, Hernández, S, Cavieres, VA, Soza, A, Guzmán, F, Arriagada, G, Yuseff, MI, Mardones, GA, Burgos, PV, Luini, A, González, A & Cancino, J 2019, 'KDEL receptor regulates secretion by lysosome relocation- and autophagy-dependent modulation of lipid-droplet turnover', Nature Communications, vol. 10, n.º 1, 735. https://doi.org/10.1038/s41467-019-08501-w

KDEL receptor regulates secretion by lysosome relocation- and autophagy-dependent modulation of lipid-droplet turnover. / Tapia, Diego; Jiménez, Tomás; Zamora, Constanza; Espinoza, Javier; Rizzo, Riccardo; González-Cárdenas, Alexis; Fuentes, Danitza; Hernández, Sergio; Cavieres, Viviana A.; Soza, Andrea; Guzmán, Fanny; Arriagada, Gloria; Yuseff, María Isabel; Mardones, Gonzalo A.; Burgos, Patricia V.; Luini, Alberto; González, Alfonso; Cancino, Jorge.

En: Nature Communications, Vol. 10, N.º 1, 735, 13.02.2019.

Resultado de la investigación: Article

TY - JOUR

T1 - KDEL receptor regulates secretion by lysosome relocation- and autophagy-dependent modulation of lipid-droplet turnover

AU - Tapia, Diego

AU - Jiménez, Tomás

AU - Zamora, Constanza

AU - Espinoza, Javier

AU - Rizzo, Riccardo

AU - González-Cárdenas, Alexis

AU - Fuentes, Danitza

AU - Hernández, Sergio

AU - Cavieres, Viviana A.

AU - Soza, Andrea

AU - Guzmán, Fanny

AU - Arriagada, Gloria

AU - Yuseff, María Isabel

AU - Mardones, Gonzalo A.

AU - Burgos, Patricia V.

AU - Luini, Alberto

AU - González, Alfonso

AU - Cancino, Jorge

PY - 2019/2/13

Y1 - 2019/2/13

N2 - Inter-organelle signalling has essential roles in cell physiology encompassing cell metabolism, aging and temporal adaptation to external and internal perturbations. How such signalling coordinates different organelle functions within adaptive responses remains unknown. Membrane traffic is a fundamental process in which membrane fluxes need to be sensed for the adjustment of cellular requirements and homeostasis. Studying endoplasmic reticulum-to-Golgi trafficking, we found that Golgi-based, KDEL receptor-dependent signalling promotes lysosome repositioning to the perinuclear area, involving a complex process intertwined to autophagy, lipid-droplet turnover and Golgi-mediated secretion that engages the microtubule motor protein dynein-LRB1 and the autophagy cargo receptor p62/SQSTM1. This process, here named ‘traffic-induced degradation response for secretion’ (TIDeRS) discloses a cellular mechanism by which nutrient and membrane sensing machineries cooperate to sustain Golgi-dependent protein secretion.

AB - Inter-organelle signalling has essential roles in cell physiology encompassing cell metabolism, aging and temporal adaptation to external and internal perturbations. How such signalling coordinates different organelle functions within adaptive responses remains unknown. Membrane traffic is a fundamental process in which membrane fluxes need to be sensed for the adjustment of cellular requirements and homeostasis. Studying endoplasmic reticulum-to-Golgi trafficking, we found that Golgi-based, KDEL receptor-dependent signalling promotes lysosome repositioning to the perinuclear area, involving a complex process intertwined to autophagy, lipid-droplet turnover and Golgi-mediated secretion that engages the microtubule motor protein dynein-LRB1 and the autophagy cargo receptor p62/SQSTM1. This process, here named ‘traffic-induced degradation response for secretion’ (TIDeRS) discloses a cellular mechanism by which nutrient and membrane sensing machineries cooperate to sustain Golgi-dependent protein secretion.

UR - http://www.scopus.com/inward/record.url?scp=85061484658&partnerID=8YFLogxK

U2 - 10.1038/s41467-019-08501-w

DO - 10.1038/s41467-019-08501-w

M3 - Article

VL - 10

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

IS - 1

M1 - 735

ER -