TY - JOUR
T1 - Iron acquisition and siderophore production in the fish pathogen Renibacterium salmoninarum
AU - Bethke, J.
AU - Poblete-Morales, M.
AU - Irgang, R.
AU - Yáñez, A.
AU - Avendaño-Herrera, R.
N1 - Publisher Copyright:
© 2016 John Wiley & Sons Ltd.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2016/11/1
Y1 - 2016/11/1
N2 - Renibacterium salmoninarum is the causative agent of bacterial kidney disease, which significantly affects salmonid farming worldwide. Despite this impact, there is scarce data on its iron uptake ability, a factor of pathogenesis. This study investigated the iron acquisition mechanisms of R. salmoninarum and its capacity to uptake iron from different sources. Thirty-two Chilean isolates and the DSM20767T type strain grew in the presence of 2,2'-Dipyridyl at varying concentrations (250-330 μm), and all isolates positively reacted on chrome azurol S agar. Subsequently, inocula of four Chilean isolates and the type strain were prepared with or without 200 μm of 2,2'-Dipyridyl for uptake assays. Assay results revealed differences between the isolates in terms of iron acquisition. While a prior iron-limited environment was, for most isolates, not required to activate the uptake of iron (II) sulphate, ammonium iron (III) citrate or iron (III) chloride at higher concentrations (100 μm), it did facilitate growth at lower iron concentrations (10 μm and 1 μm). An exception was the H-2 isolate, which only grew with 100 μm of iron sulphide. In turn, 100 μm of haemin was toxic when isolates were grown in normal KDM-2. In silico R. salmoninarumATCC 33209T genome analysis detected various genes coding iron uptake-related proteins. This is the first study indicating two iron acquisition systems in R. salmoninarum: one involving siderophores and another involving haem group utilization. These data represent a first step towards fully elucidating this virulence factor in the pathogenic R. salmoninarum.
AB - Renibacterium salmoninarum is the causative agent of bacterial kidney disease, which significantly affects salmonid farming worldwide. Despite this impact, there is scarce data on its iron uptake ability, a factor of pathogenesis. This study investigated the iron acquisition mechanisms of R. salmoninarum and its capacity to uptake iron from different sources. Thirty-two Chilean isolates and the DSM20767T type strain grew in the presence of 2,2'-Dipyridyl at varying concentrations (250-330 μm), and all isolates positively reacted on chrome azurol S agar. Subsequently, inocula of four Chilean isolates and the type strain were prepared with or without 200 μm of 2,2'-Dipyridyl for uptake assays. Assay results revealed differences between the isolates in terms of iron acquisition. While a prior iron-limited environment was, for most isolates, not required to activate the uptake of iron (II) sulphate, ammonium iron (III) citrate or iron (III) chloride at higher concentrations (100 μm), it did facilitate growth at lower iron concentrations (10 μm and 1 μm). An exception was the H-2 isolate, which only grew with 100 μm of iron sulphide. In turn, 100 μm of haemin was toxic when isolates were grown in normal KDM-2. In silico R. salmoninarumATCC 33209T genome analysis detected various genes coding iron uptake-related proteins. This is the first study indicating two iron acquisition systems in R. salmoninarum: one involving siderophores and another involving haem group utilization. These data represent a first step towards fully elucidating this virulence factor in the pathogenic R. salmoninarum.
KW - Gram-positive
KW - Renibacterium salmoninarum
KW - bacterial kidney disease
KW - chrome azurol S
KW - iron uptake
KW - virulence
UR - http://www.scopus.com/inward/record.url?scp=84991203720&partnerID=8YFLogxK
U2 - 10.1111/jfd.12456
DO - 10.1111/jfd.12456
M3 - Article
C2 - 27696458
AN - SCOPUS:84991203720
SN - 0140-7775
VL - 39
SP - 1275
EP - 1283
JO - Journal of Fish Diseases
JF - Journal of Fish Diseases
IS - 11
ER -