Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?

S. J. Prentice, C. Ashall, P. A. James, L. Short, P. A. Mazzali, D. Bersier, P. A. Crowther, C. Barbarino, T. W. Chen, C. M. Copperwheat, M. J. Darnley, L. Denneau, N. Elias-Rosa, M. Fraser, L. Galbany, A. Gal-Yam, J. Harmanen, D. A. Howell, G. Hosseinzadeh, C. Inserra & 25 otros E. Kankare, E. Karamehmetoglu, G. P. Lamb, M. Limongi, K. Maguire, C. McCully, F. Olivares, A. S. Piascik, G. Pignata, D. E. Reichart, A. Rest, T. Reynolds, Rodríguez, J. L.O. Saario, S. Schulze, S. J. Smartt, K. W. Smith, J. Sollerman, B. Stalder, M. Sullivan, F. Taddia, S. Valenti, S. D. Vergani, S. C. Williams, D. R. Young

Resultado de la investigación: Article

3 Citas (Scopus)

Resumen

We present observations and analysis of 18 stripped-envelope supernovae observed during 2013–2018. This sample consists of five H/He-rich SNe, six H-poor/He-rich SNe, three narrow lined SNe Ic, and four broad lined SNe Ic. The peak luminosity and characteristic time-scales of the bolometric light curves are calculated, and the light curves modelled to derive 56 Ni and ejecta masses (M Ni and M ej ). Additionally, the temperature evolution and spectral line velocity curves of each SN are examined. Analysis of the [O I] line in the nebular phase of eight SNe suggests their progenitors had initial masses <20 M. The bolometric light curve properties are examined in combination with those of other SE events from the literature. The resulting data set gives the M ej distribution for 80 SE–SNe, the largest such sample in the literature to date, and shows that SNe Ib have the lowest median M ej , followed by narrow-lined SNe Ic, H/He-rich SNe, broad-lined SNe Ic, and finally gamma-ray burst SNe. SNe Ic-6/7 show the largest spread of M ej ranging from ∼1.2–11 M, considerably greater than any other subtype. For all SE–SNe <M ej > = 2.8 ± 1.5 M which further strengthens the evidence that SE–SNe arise from low-mass progenitors which are typically <5 M at the time of explosion, again suggesting M ZAMS <25 M. The low <M ej > and lack of clear bimodality in the distribution implies <30 M progenitors and that envelope stripping via binary interaction is the dominant evolutionary pathway of these SNe.

Idioma originalEnglish
Páginas (desde-hasta)1559-1578
Número de páginas20
PublicaciónMonthly Notices of the Royal Astronomical Society
Volumen485
N.º2
DOI
EstadoPublished - 15 feb 2019

Huella dactilar

light curve
supernovae
envelopes
ejecta
stripping
gamma ray bursts
line spectra
explosions
explosion
luminosity
timescale
curves
temperature
interactions
distribution
analysis

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Citar esto

Prentice, S. J. ; Ashall, C. ; James, P. A. ; Short, L. ; Mazzali, P. A. ; Bersier, D. ; Crowther, P. A. ; Barbarino, C. ; Chen, T. W. ; Copperwheat, C. M. ; Darnley, M. J. ; Denneau, L. ; Elias-Rosa, N. ; Fraser, M. ; Galbany, L. ; Gal-Yam, A. ; Harmanen, J. ; Howell, D. A. ; Hosseinzadeh, G. ; Inserra, C. ; Kankare, E. ; Karamehmetoglu, E. ; Lamb, G. P. ; Limongi, M. ; Maguire, K. ; McCully, C. ; Olivares, F. ; Piascik, A. S. ; Pignata, G. ; Reichart, D. E. ; Rest, A. ; Reynolds, T. ; Rodríguez ; Saario, J. L.O. ; Schulze, S. ; Smartt, S. J. ; Smith, K. W. ; Sollerman, J. ; Stalder, B. ; Sullivan, M. ; Taddia, F. ; Valenti, S. ; Vergani, S. D. ; Williams, S. C. ; Young, D. R. / Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?. En: Monthly Notices of the Royal Astronomical Society. 2019 ; Vol. 485, N.º 2. pp. 1559-1578.
@article{db8bb2a8f2a140d5afb36dffb6a5b5a8,
title = "Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?",
abstract = "We present observations and analysis of 18 stripped-envelope supernovae observed during 2013–2018. This sample consists of five H/He-rich SNe, six H-poor/He-rich SNe, three narrow lined SNe Ic, and four broad lined SNe Ic. The peak luminosity and characteristic time-scales of the bolometric light curves are calculated, and the light curves modelled to derive 56 Ni and ejecta masses (M Ni and M ej ). Additionally, the temperature evolution and spectral line velocity curves of each SN are examined. Analysis of the [O I] line in the nebular phase of eight SNe suggests their progenitors had initial masses <20 M. The bolometric light curve properties are examined in combination with those of other SE events from the literature. The resulting data set gives the M ej distribution for 80 SE–SNe, the largest such sample in the literature to date, and shows that SNe Ib have the lowest median M ej , followed by narrow-lined SNe Ic, H/He-rich SNe, broad-lined SNe Ic, and finally gamma-ray burst SNe. SNe Ic-6/7 show the largest spread of M ej ranging from ∼1.2–11 M, considerably greater than any other subtype. For all SE–SNe <M ej > = 2.8 ± 1.5 M which further strengthens the evidence that SE–SNe arise from low-mass progenitors which are typically <5 M at the time of explosion, again suggesting M ZAMS <25 M. The low <M ej > and lack of clear bimodality in the distribution implies <30 M progenitors and that envelope stripping via binary interaction is the dominant evolutionary pathway of these SNe.",
keywords = "Supernovae: general",
author = "Prentice, {S. J.} and C. Ashall and James, {P. A.} and L. Short and Mazzali, {P. A.} and D. Bersier and Crowther, {P. A.} and C. Barbarino and Chen, {T. W.} and Copperwheat, {C. M.} and Darnley, {M. J.} and L. Denneau and N. Elias-Rosa and M. Fraser and L. Galbany and A. Gal-Yam and J. Harmanen and Howell, {D. A.} and G. Hosseinzadeh and C. Inserra and E. Kankare and E. Karamehmetoglu and Lamb, {G. P.} and M. Limongi and K. Maguire and C. McCully and F. Olivares and Piascik, {A. S.} and G. Pignata and Reichart, {D. E.} and A. Rest and T. Reynolds and Rodr{\'i}guez and Saario, {J. L.O.} and S. Schulze and Smartt, {S. J.} and Smith, {K. W.} and J. Sollerman and B. Stalder and M. Sullivan and F. Taddia and S. Valenti and Vergani, {S. D.} and Williams, {S. C.} and Young, {D. R.}",
year = "2019",
month = "2",
day = "15",
doi = "10.1093/mnras/sty3399",
language = "English",
volume = "485",
pages = "1559--1578",
journal = "Monthly Notices of the Royal Astronomical Society",
issn = "0035-8711",
publisher = "Oxford University Press",
number = "2",

}

Prentice, SJ, Ashall, C, James, PA, Short, L, Mazzali, PA, Bersier, D, Crowther, PA, Barbarino, C, Chen, TW, Copperwheat, CM, Darnley, MJ, Denneau, L, Elias-Rosa, N, Fraser, M, Galbany, L, Gal-Yam, A, Harmanen, J, Howell, DA, Hosseinzadeh, G, Inserra, C, Kankare, E, Karamehmetoglu, E, Lamb, GP, Limongi, M, Maguire, K, McCully, C, Olivares, F, Piascik, AS, Pignata, G, Reichart, DE, Rest, A, Reynolds, T, Rodríguez, Saario, JLO, Schulze, S, Smartt, SJ, Smith, KW, Sollerman, J, Stalder, B, Sullivan, M, Taddia, F, Valenti, S, Vergani, SD, Williams, SC & Young, DR 2019, 'Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?', Monthly Notices of the Royal Astronomical Society, vol. 485, n.º 2, pp. 1559-1578. https://doi.org/10.1093/mnras/sty3399

Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors? / Prentice, S. J.; Ashall, C.; James, P. A.; Short, L.; Mazzali, P. A.; Bersier, D.; Crowther, P. A.; Barbarino, C.; Chen, T. W.; Copperwheat, C. M.; Darnley, M. J.; Denneau, L.; Elias-Rosa, N.; Fraser, M.; Galbany, L.; Gal-Yam, A.; Harmanen, J.; Howell, D. A.; Hosseinzadeh, G.; Inserra, C.; Kankare, E.; Karamehmetoglu, E.; Lamb, G. P.; Limongi, M.; Maguire, K.; McCully, C.; Olivares, F.; Piascik, A. S.; Pignata, G.; Reichart, D. E.; Rest, A.; Reynolds, T.; Rodríguez; Saario, J. L.O.; Schulze, S.; Smartt, S. J.; Smith, K. W.; Sollerman, J.; Stalder, B.; Sullivan, M.; Taddia, F.; Valenti, S.; Vergani, S. D.; Williams, S. C.; Young, D. R.

En: Monthly Notices of the Royal Astronomical Society, Vol. 485, N.º 2, 15.02.2019, p. 1559-1578.

Resultado de la investigación: Article

TY - JOUR

T1 - Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?

AU - Prentice, S. J.

AU - Ashall, C.

AU - James, P. A.

AU - Short, L.

AU - Mazzali, P. A.

AU - Bersier, D.

AU - Crowther, P. A.

AU - Barbarino, C.

AU - Chen, T. W.

AU - Copperwheat, C. M.

AU - Darnley, M. J.

AU - Denneau, L.

AU - Elias-Rosa, N.

AU - Fraser, M.

AU - Galbany, L.

AU - Gal-Yam, A.

AU - Harmanen, J.

AU - Howell, D. A.

AU - Hosseinzadeh, G.

AU - Inserra, C.

AU - Kankare, E.

AU - Karamehmetoglu, E.

AU - Lamb, G. P.

AU - Limongi, M.

AU - Maguire, K.

AU - McCully, C.

AU - Olivares, F.

AU - Piascik, A. S.

AU - Pignata, G.

AU - Reichart, D. E.

AU - Rest, A.

AU - Reynolds, T.

AU - Rodríguez,

AU - Saario, J. L.O.

AU - Schulze, S.

AU - Smartt, S. J.

AU - Smith, K. W.

AU - Sollerman, J.

AU - Stalder, B.

AU - Sullivan, M.

AU - Taddia, F.

AU - Valenti, S.

AU - Vergani, S. D.

AU - Williams, S. C.

AU - Young, D. R.

PY - 2019/2/15

Y1 - 2019/2/15

N2 - We present observations and analysis of 18 stripped-envelope supernovae observed during 2013–2018. This sample consists of five H/He-rich SNe, six H-poor/He-rich SNe, three narrow lined SNe Ic, and four broad lined SNe Ic. The peak luminosity and characteristic time-scales of the bolometric light curves are calculated, and the light curves modelled to derive 56 Ni and ejecta masses (M Ni and M ej ). Additionally, the temperature evolution and spectral line velocity curves of each SN are examined. Analysis of the [O I] line in the nebular phase of eight SNe suggests their progenitors had initial masses <20 M. The bolometric light curve properties are examined in combination with those of other SE events from the literature. The resulting data set gives the M ej distribution for 80 SE–SNe, the largest such sample in the literature to date, and shows that SNe Ib have the lowest median M ej , followed by narrow-lined SNe Ic, H/He-rich SNe, broad-lined SNe Ic, and finally gamma-ray burst SNe. SNe Ic-6/7 show the largest spread of M ej ranging from ∼1.2–11 M, considerably greater than any other subtype. For all SE–SNe <M ej > = 2.8 ± 1.5 M which further strengthens the evidence that SE–SNe arise from low-mass progenitors which are typically <5 M at the time of explosion, again suggesting M ZAMS <25 M. The low <M ej > and lack of clear bimodality in the distribution implies <30 M progenitors and that envelope stripping via binary interaction is the dominant evolutionary pathway of these SNe.

AB - We present observations and analysis of 18 stripped-envelope supernovae observed during 2013–2018. This sample consists of five H/He-rich SNe, six H-poor/He-rich SNe, three narrow lined SNe Ic, and four broad lined SNe Ic. The peak luminosity and characteristic time-scales of the bolometric light curves are calculated, and the light curves modelled to derive 56 Ni and ejecta masses (M Ni and M ej ). Additionally, the temperature evolution and spectral line velocity curves of each SN are examined. Analysis of the [O I] line in the nebular phase of eight SNe suggests their progenitors had initial masses <20 M. The bolometric light curve properties are examined in combination with those of other SE events from the literature. The resulting data set gives the M ej distribution for 80 SE–SNe, the largest such sample in the literature to date, and shows that SNe Ib have the lowest median M ej , followed by narrow-lined SNe Ic, H/He-rich SNe, broad-lined SNe Ic, and finally gamma-ray burst SNe. SNe Ic-6/7 show the largest spread of M ej ranging from ∼1.2–11 M, considerably greater than any other subtype. For all SE–SNe <M ej > = 2.8 ± 1.5 M which further strengthens the evidence that SE–SNe arise from low-mass progenitors which are typically <5 M at the time of explosion, again suggesting M ZAMS <25 M. The low <M ej > and lack of clear bimodality in the distribution implies <30 M progenitors and that envelope stripping via binary interaction is the dominant evolutionary pathway of these SNe.

KW - Supernovae: general

UR - http://www.scopus.com/inward/record.url?scp=85062841710&partnerID=8YFLogxK

U2 - 10.1093/mnras/sty3399

DO - 10.1093/mnras/sty3399

M3 - Article

VL - 485

SP - 1559

EP - 1578

JO - Monthly Notices of the Royal Astronomical Society

JF - Monthly Notices of the Royal Astronomical Society

SN - 0035-8711

IS - 2

ER -