TY - JOUR
T1 - Intramuscular Hamstring Stiffness Affects Anatomically Modeled Localized Muscle Strain during Passive Hip Flexion
AU - Rehbein, Carlos O.
AU - McDougle, Jacob M.
AU - Peñailillo, Luis E.
AU - Earp, Jacob E.
N1 - Publisher Copyright:
© 2024 National Strength and Conditioning Association. Unauthorized reproduction of this article is prohibited.
PY - 2024
Y1 - 2024
N2 - Rehbein, CO, McDougle, JM, Peñailillo, L, and Earp, JE. Intramuscular hamstring stiffness affects anatomically modeled localized muscle strain during passive hip flexion. J Strength Cond Res XX(X): 000-000, 2024 - Hamstring strain injuries occur when localized tissue strain capacity is exceeded. Localized strain may be affected by intramuscular variation in stiffness, but research in this area is lacking. The purpose of this study was to determine the effects of intramuscular hamstring stiffness on localized muscle strain during passive hip flexion. Twenty-eight (age 25.0 ± 4.9 years) healthy women (n = 15) and men (n = 13) had biceps femoris, semitendinosus, and semimembranosus stiffness measured proximally, medially, and distally during passive hip flexion and extension using shear-wave elastography. Anthropometric and stiffness measurements were entered into an anatomical model of equivalent springs to estimate localized tissue strain and differentiate between the relative contribution to passive strain from each muscular region. In shortened and stretched positions, stiffness was lowest proximally for all muscles (Cohen's d = 0.66-0.79, p < 0.001). In addition, relative strain contribution was greater proximally (37.5-39.4%) compared with middle (31.74-32.2%) or distal (28.6-30.3%) regions (p < 0.001), with proximal contribution to strain increasing with greater hip flexion. Our results suggest that intramuscular variations in passive hamstring stiffness contribute to inhomogeneous strain throughout the muscle during passive hip flexion. Given the prevalence of proximal stretch-pattern strain injuries, variation in intramuscular stiffness may contribute to risk for such injuries.
AB - Rehbein, CO, McDougle, JM, Peñailillo, L, and Earp, JE. Intramuscular hamstring stiffness affects anatomically modeled localized muscle strain during passive hip flexion. J Strength Cond Res XX(X): 000-000, 2024 - Hamstring strain injuries occur when localized tissue strain capacity is exceeded. Localized strain may be affected by intramuscular variation in stiffness, but research in this area is lacking. The purpose of this study was to determine the effects of intramuscular hamstring stiffness on localized muscle strain during passive hip flexion. Twenty-eight (age 25.0 ± 4.9 years) healthy women (n = 15) and men (n = 13) had biceps femoris, semitendinosus, and semimembranosus stiffness measured proximally, medially, and distally during passive hip flexion and extension using shear-wave elastography. Anthropometric and stiffness measurements were entered into an anatomical model of equivalent springs to estimate localized tissue strain and differentiate between the relative contribution to passive strain from each muscular region. In shortened and stretched positions, stiffness was lowest proximally for all muscles (Cohen's d = 0.66-0.79, p < 0.001). In addition, relative strain contribution was greater proximally (37.5-39.4%) compared with middle (31.74-32.2%) or distal (28.6-30.3%) regions (p < 0.001), with proximal contribution to strain increasing with greater hip flexion. Our results suggest that intramuscular variations in passive hamstring stiffness contribute to inhomogeneous strain throughout the muscle during passive hip flexion. Given the prevalence of proximal stretch-pattern strain injuries, variation in intramuscular stiffness may contribute to risk for such injuries.
KW - hamstring strain
KW - muscle stiffness
KW - shear-wave elastography
KW - strain injury
UR - http://www.scopus.com/inward/record.url?scp=85199937282&partnerID=8YFLogxK
U2 - 10.1519/JSC.0000000000004898
DO - 10.1519/JSC.0000000000004898
M3 - Article
AN - SCOPUS:85199937282
SN - 1064-8011
JO - Journal of Strength and Conditioning Research
JF - Journal of Strength and Conditioning Research
ER -