Integration of target discovery, drug discovery and drug delivery

A review on computational strategies

Resultado de la investigación: Review article

Resumen

Most of the computational tools involved in drug discovery developed during the 1980s were largely based on computational chemistry, quantitative structure-activity relationship (QSAR) and cheminformatics. Subsequently, the advent of genomics in the 2000s gave rise to a huge number of databases and computational tools developed to analyze large quantities of data, through bioinformatics, to obtain valuable information about the genomic regulation of different organisms. Target identification and validation is a long process during which evidence for and against a target is accumulated in the pursuit of developing new drugs. Finally, the drug delivery system appears as a novel approach to improve drug targeting and releasing into the cells, leading to new opportunities to improve drug efficiency and avoid potential secondary effects. In each area: target discovery, drug discovery and drug delivery, different computational strategies are being developed to accelerate the process of selection and discovery of new tools to be applied to different scientific fields. Research on these three topics is growing rapidly, but still requires a global view of this landscape to detect the most challenging bottleneck and how computational tools could be integrated in each topic. This review describes the current state of the art in computational strategies for target discovery, drug discovery and drug delivery and how these fields could be integrated. Finally, we will discuss about the current needs in these fields and how the continuous development of databases and computational tools will impact on the improvement of those areas. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.

Idioma originalEnglish
Número de artículoe1554
PublicaciónWiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology
Volumen11
N.º4
DOI
EstadoPublished - 1 jul 2019

Huella dactilar

Drug Discovery
Drug delivery
Pharmaceutical Preparations
Drug Delivery Systems
Databases
Computational chemistry
Nanomedicine
Medical nanotechnology
Nanotechnology
Systems Biology
Quantitative Structure-Activity Relationship
Bioinformatics
Genomics
Computational Biology
Communicable Diseases
Technology
Therapeutics
Research

ASJC Scopus subject areas

  • Bioengineering
  • Medicine (miscellaneous)
  • Biomedical Engineering

Citar esto

@article{2674cbc675ed4e79bc7cc69ef828552e,
title = "Integration of target discovery, drug discovery and drug delivery: A review on computational strategies",
abstract = "Most of the computational tools involved in drug discovery developed during the 1980s were largely based on computational chemistry, quantitative structure-activity relationship (QSAR) and cheminformatics. Subsequently, the advent of genomics in the 2000s gave rise to a huge number of databases and computational tools developed to analyze large quantities of data, through bioinformatics, to obtain valuable information about the genomic regulation of different organisms. Target identification and validation is a long process during which evidence for and against a target is accumulated in the pursuit of developing new drugs. Finally, the drug delivery system appears as a novel approach to improve drug targeting and releasing into the cells, leading to new opportunities to improve drug efficiency and avoid potential secondary effects. In each area: target discovery, drug discovery and drug delivery, different computational strategies are being developed to accelerate the process of selection and discovery of new tools to be applied to different scientific fields. Research on these three topics is growing rapidly, but still requires a global view of this landscape to detect the most challenging bottleneck and how computational tools could be integrated in each topic. This review describes the current state of the art in computational strategies for target discovery, drug discovery and drug delivery and how these fields could be integrated. Finally, we will discuss about the current needs in these fields and how the continuous development of databases and computational tools will impact on the improvement of those areas. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.",
keywords = "drug delivery, drug discovery, target discovery",
author = "Yorley Duarte and Valeria M{\'a}rquez-Miranda and Miossec, {Matthieu J.} and Fernando Gonz{\'a}lez-Nilo",
year = "2019",
month = "7",
day = "1",
doi = "10.1002/wnan.1554",
language = "English",
volume = "11",
journal = "Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology",
issn = "1939-0041",
publisher = "John Wiley and Sons Inc.",
number = "4",

}

TY - JOUR

T1 - Integration of target discovery, drug discovery and drug delivery

T2 - A review on computational strategies

AU - Duarte, Yorley

AU - Márquez-Miranda, Valeria

AU - Miossec, Matthieu J.

AU - González-Nilo, Fernando

PY - 2019/7/1

Y1 - 2019/7/1

N2 - Most of the computational tools involved in drug discovery developed during the 1980s were largely based on computational chemistry, quantitative structure-activity relationship (QSAR) and cheminformatics. Subsequently, the advent of genomics in the 2000s gave rise to a huge number of databases and computational tools developed to analyze large quantities of data, through bioinformatics, to obtain valuable information about the genomic regulation of different organisms. Target identification and validation is a long process during which evidence for and against a target is accumulated in the pursuit of developing new drugs. Finally, the drug delivery system appears as a novel approach to improve drug targeting and releasing into the cells, leading to new opportunities to improve drug efficiency and avoid potential secondary effects. In each area: target discovery, drug discovery and drug delivery, different computational strategies are being developed to accelerate the process of selection and discovery of new tools to be applied to different scientific fields. Research on these three topics is growing rapidly, but still requires a global view of this landscape to detect the most challenging bottleneck and how computational tools could be integrated in each topic. This review describes the current state of the art in computational strategies for target discovery, drug discovery and drug delivery and how these fields could be integrated. Finally, we will discuss about the current needs in these fields and how the continuous development of databases and computational tools will impact on the improvement of those areas. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.

AB - Most of the computational tools involved in drug discovery developed during the 1980s were largely based on computational chemistry, quantitative structure-activity relationship (QSAR) and cheminformatics. Subsequently, the advent of genomics in the 2000s gave rise to a huge number of databases and computational tools developed to analyze large quantities of data, through bioinformatics, to obtain valuable information about the genomic regulation of different organisms. Target identification and validation is a long process during which evidence for and against a target is accumulated in the pursuit of developing new drugs. Finally, the drug delivery system appears as a novel approach to improve drug targeting and releasing into the cells, leading to new opportunities to improve drug efficiency and avoid potential secondary effects. In each area: target discovery, drug discovery and drug delivery, different computational strategies are being developed to accelerate the process of selection and discovery of new tools to be applied to different scientific fields. Research on these three topics is growing rapidly, but still requires a global view of this landscape to detect the most challenging bottleneck and how computational tools could be integrated in each topic. This review describes the current state of the art in computational strategies for target discovery, drug discovery and drug delivery and how these fields could be integrated. Finally, we will discuss about the current needs in these fields and how the continuous development of databases and computational tools will impact on the improvement of those areas. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.

KW - drug delivery

KW - drug discovery

KW - target discovery

UR - http://www.scopus.com/inward/record.url?scp=85063686285&partnerID=8YFLogxK

U2 - 10.1002/wnan.1554

DO - 10.1002/wnan.1554

M3 - Review article

VL - 11

JO - Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology

JF - Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology

SN - 1939-0041

IS - 4

M1 - e1554

ER -