Improving MMAS using parameter control

Elizabeth Montero, María Cristina Riff, Daniel Basterrica

Resultado de la investigación: Conference contribution

4 Citas (Scopus)

Resumen

Tunning parameters values in metaheuristics is a time consuming task. Techniques to control parameters during the execution have been successfully applied into evolutionary algorithms. The key idea is that the algorithm themselves computes its parameters values according to its current state of the search. In this paper, we propose a strategy to include parameters control on ants based algorithms. We have tested our approach to solve hard instances of the travel salesman problem using MMAS. The tests shown that in some cases, it is possible to obtain better results than the reported ones for the same algorithm, by including a parameter control strategy.

Idioma originalEnglish
Título de la publicación alojada2008 IEEE Congress on Evolutionary Computation, CEC 2008
Páginas4006-4010
Número de páginas5
DOI
EstadoPublished - 14 nov 2008
Evento2008 IEEE Congress on Evolutionary Computation, CEC 2008 - Hong Kong, China
Duración: 1 jun 20086 jun 2008

Conference

Conference2008 IEEE Congress on Evolutionary Computation, CEC 2008
PaísChina
CiudadHong Kong
Período1/06/086/06/08

Huella dactilar

Control Parameter
Metaheuristics
Evolutionary algorithms
Control Strategy
Evolutionary Algorithms
Strategy

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Theoretical Computer Science

Citar esto

Montero, E., Riff, M. C., & Basterrica, D. (2008). Improving MMAS using parameter control. En 2008 IEEE Congress on Evolutionary Computation, CEC 2008 (pp. 4006-4010). [4631343] https://doi.org/10.1109/CEC.2008.4631343
Montero, Elizabeth ; Riff, María Cristina ; Basterrica, Daniel. / Improving MMAS using parameter control. 2008 IEEE Congress on Evolutionary Computation, CEC 2008. 2008. pp. 4006-4010
@inproceedings{b4bc66496b4c459cad6f928915395527,
title = "Improving MMAS using parameter control",
abstract = "Tunning parameters values in metaheuristics is a time consuming task. Techniques to control parameters during the execution have been successfully applied into evolutionary algorithms. The key idea is that the algorithm themselves computes its parameters values according to its current state of the search. In this paper, we propose a strategy to include parameters control on ants based algorithms. We have tested our approach to solve hard instances of the travel salesman problem using MMAS. The tests shown that in some cases, it is possible to obtain better results than the reported ones for the same algorithm, by including a parameter control strategy.",
author = "Elizabeth Montero and Riff, {Mar{\'i}a Cristina} and Daniel Basterrica",
year = "2008",
month = "11",
day = "14",
doi = "10.1109/CEC.2008.4631343",
language = "English",
isbn = "9781424418237",
pages = "4006--4010",
booktitle = "2008 IEEE Congress on Evolutionary Computation, CEC 2008",

}

Montero, E, Riff, MC & Basterrica, D 2008, Improving MMAS using parameter control. En 2008 IEEE Congress on Evolutionary Computation, CEC 2008., 4631343, pp. 4006-4010, 2008 IEEE Congress on Evolutionary Computation, CEC 2008, Hong Kong, China, 1/06/08. https://doi.org/10.1109/CEC.2008.4631343

Improving MMAS using parameter control. / Montero, Elizabeth; Riff, María Cristina; Basterrica, Daniel.

2008 IEEE Congress on Evolutionary Computation, CEC 2008. 2008. p. 4006-4010 4631343.

Resultado de la investigación: Conference contribution

TY - GEN

T1 - Improving MMAS using parameter control

AU - Montero, Elizabeth

AU - Riff, María Cristina

AU - Basterrica, Daniel

PY - 2008/11/14

Y1 - 2008/11/14

N2 - Tunning parameters values in metaheuristics is a time consuming task. Techniques to control parameters during the execution have been successfully applied into evolutionary algorithms. The key idea is that the algorithm themselves computes its parameters values according to its current state of the search. In this paper, we propose a strategy to include parameters control on ants based algorithms. We have tested our approach to solve hard instances of the travel salesman problem using MMAS. The tests shown that in some cases, it is possible to obtain better results than the reported ones for the same algorithm, by including a parameter control strategy.

AB - Tunning parameters values in metaheuristics is a time consuming task. Techniques to control parameters during the execution have been successfully applied into evolutionary algorithms. The key idea is that the algorithm themselves computes its parameters values according to its current state of the search. In this paper, we propose a strategy to include parameters control on ants based algorithms. We have tested our approach to solve hard instances of the travel salesman problem using MMAS. The tests shown that in some cases, it is possible to obtain better results than the reported ones for the same algorithm, by including a parameter control strategy.

UR - http://www.scopus.com/inward/record.url?scp=55749091565&partnerID=8YFLogxK

U2 - 10.1109/CEC.2008.4631343

DO - 10.1109/CEC.2008.4631343

M3 - Conference contribution

AN - SCOPUS:55749091565

SN - 9781424418237

SP - 4006

EP - 4010

BT - 2008 IEEE Congress on Evolutionary Computation, CEC 2008

ER -

Montero E, Riff MC, Basterrica D. Improving MMAS using parameter control. En 2008 IEEE Congress on Evolutionary Computation, CEC 2008. 2008. p. 4006-4010. 4631343 https://doi.org/10.1109/CEC.2008.4631343