Resumen
A neural network (NN) heuristic for the Graph Bisection Problem is studied numerically on geometrically connected graphs, and its performance is compared with the Kernighan-Lin (KL) and Multilevel (ML) heuristics. For medium-scale sparse graphs with n = 2000 to n = 12000 nodes, the NN heuristic applied to the Graph Bisection Problem presents a greedy behavior in comparison to other local improvements heuristics, namely Kernighan-Lin and Multilevel. The experimental results for large graphs recommend the use of KL as the partitioning heuristic for sparse geometrically connected graphs.
Título traducido de la contribución | Neural network, Kernighan-Lin and multilevel heuristics for the Graph Bisection Problem on geometrically connected graphs |
---|---|
Idioma original | Español |
Páginas (desde-hasta) | 97-100 |
Número de páginas | 4 |
Publicación | Acta Cientifica Venezolana |
Volumen | 60 |
N.º | 3 |
Estado | Publicada - 2009 |
Publicado de forma externa | Sí |
Palabras clave
- Graph bisection problem
- Neural network
Áreas temáticas de ASJC Scopus
- Bioquímica, genética y biología molecular (todo)
- Ciencias ambientales (todo)
- Agricultura y biología (todo)