Graphs admitting antimagic labeling for arbitrary sets of positive integers

Martín Matamala, José Zamora

Resultado de la investigación: Contribución a una revistaArtículo

Resumen

A connected graph G=(V,E) with m edges is called universal antimagic if for each set B of m positive integers there is an bijective function f:E→B such that the function f˜:V→N defined at each vertex v as the sum of all labels of edges incident to v is injective. In this work we prove that several classes of graphs are universal antimagic. Among others, paths, cycles, split graphs, and any graph which contains the complete bipartite graph K2,n as a spanning subgraph.

Idioma originalInglés
Páginas (desde-hasta)159-164
Número de páginas6
PublicaciónElectronic Notes in Discrete Mathematics
Volumen62
DOI
EstadoPublicada - 1 nov 2017

Áreas temáticas de ASJC Scopus

  • Matemáticas discretas y combinatorias
  • Matemáticas aplicadas

Huella Profundice en los temas de investigación de 'Graphs admitting antimagic labeling for arbitrary sets of positive integers'. En conjunto forman una huella única.

  • Citar esto