Resumen
A connected graph G=(V,E) with m edges is called universal antimagic if for each set B of m positive integers there is an bijective function f:E→B such that the function f˜:V→N defined at each vertex v as the sum of all labels of edges incident to v is injective. In this work we prove that several classes of graphs are universal antimagic. Among others, paths, cycles, split graphs, and any graph which contains the complete bipartite graph K2,n as a spanning subgraph.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 159-164 |
Número de páginas | 6 |
Publicación | Electronic Notes in Discrete Mathematics |
Volumen | 62 |
DOI | |
Estado | Publicada - 1 nov. 2017 |
Áreas temáticas de ASJC Scopus
- Matemáticas discretas y combinatorias
- Matemáticas aplicadas